1.Chloroplast genomic characterization and phylogenetic analysis of Pellionia scabra.
Li YAN ; Xuelian YANG ; Yongfei WU ; Xia WANG ; Xiaojing HU
Chinese Journal of Biotechnology 2023;39(7):2914-2925
Pellionia scabra belongs to the genus Pellionia in the family of Urticaceae, and is a high-quality wild vegetables with high nutritional value. In this study, high-throughput techniques were used to sequence, assemble and annotate the chloroplast genome. We also analyzed its structure, and construct the phylogenetic trees from the P. scabra to further study the chloroplast genome characteristics. The results showed that the chloroplast genome size was 153 220 bp, and the GC content was 36.4%, which belonged to the typical tetrad structure in P. scabra. The chloroplast genome encodes 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes in P. scabra. Among them, 15 genes contained 1 intron, 2 genes contained 2 introns, and rps12 had trans-splicing, respectively. In P. scabra, chloroplast genomes could be divided into four categories, including 43 photosynthesis, 64 self-replication, other 7 coding proteins, and 4 unknown functions. A total of 51 073 codons were detected in the chloroplast genome, among which the codon encoding leucine (Leu) accounted for the largest proportion, and the codon preferred to use A and U bases. There were 72 simple sequence repeats (SSRs) in the chloroplast genome of P. scabra, containing 58 single nucleotides, 12 dinucleotides, 1 trinucleotide, and 1 tetranucleotide. The ycf1 gene expansion was present at the IRb/SSC boundary. The phylogenetic trees showed that P. scabra (OL800583) was most closely related to Elatostema stewardii (MZ292972), Elatostema dissectum (MK227819) and Elatostema laevissimum var. laevissimum (MN189961). Taken together, our results provide worthwhile information for understanding the identification, genetic evolution, and genomics research of P. scabra species.
Phylogeny
;
Genome, Chloroplast/genetics*
;
Genomics
;
Chloroplasts/genetics*
;
Codon
;
Urticaceae/genetics*
2.Characteristics and phylogenetic analysis of chloroplast genome of a new type of fruit Rubus rosaefolius.
Yongfei WU ; Xuelian YANG ; Xia WANG ; Li YAN ; Wanping ZHANG
Chinese Journal of Biotechnology 2023;39(7):2939-2953
The genomic DNA of Rubus rosaefolius was extracted and sequenced by Illumina NovaSeq platform to obtain the complete chloroplast genome sequence, and the sequence characteristics and phylogenetic analysis of chloroplast genes were carried out. The results showed that the complete chloroplast genome of the R. rosaefolius was 155 650 bp in length and had a typical tetrad structure, including two reverse repeats (25 748 bp each), a large copy region (85 443 bp) and a small copy region (18 711 bp). A total of 131 genes were identified in the whole genome of R. rosaefolius chloroplast, including 86 protein coding genes, 37 tRNA genes and 8 rRNA genes. The GC content of the whole genome was 36.9%. The genome of R. rosaefolius chloroplast contains 47 scattered repeats and 72 simple sequence repeating (SSR) loci. The codon preference is leucine codon, and the codon at the end of A/U is preferred. Phylogenetic analysis showed that R. rosaefolius had the closest relationship with R. taiwanicola, followed by R. rubraangustifolius and R. glandulosopunctatus. The chloroplast genome characteristics and phylogenetic analysis of R. rosaefolius provide a theoretical basis for its genetic diversity research and chloroplast development and utilization.
Phylogeny
;
Rubus/genetics*
;
Genome, Chloroplast
;
Fruit/genetics*
;
Codon/genetics*
3.Genetic analysis of a Chinese pedigree affected with Congenital coagulation factor XII deficiency due to a c.1A>G start codon variant of F12 gene.
Weidan JI ; Sen LIN ; Jie CHEN ; Chaojun JIN ; Xiaoyue LIN ; Zhiyuan YE ; Lijun QIU ; Dingliang QIAN
Chinese Journal of Medical Genetics 2023;40(5):547-551
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a consanguineous Chinese pedigree affected with Congenital coagulation factor XII (XII) deficiency.
METHODS:
Members of the pedigree who had visited Ruian People's Hospital on July 12, 2021 were selected as the study subjects. Clinical data of the pedigree were reviewed. Peripheral venous blood samples were taken from the subjects. Blood coagulation index and genetic testing were carried out. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
This pedigree has comprised 6 individuals from 3 generations, including the proband, his father, mother, wife, sister and son. The proband was a 51-year-old male with kidney stones. Blood coagulation test showed that his activated partial thromboplastin time (APTT) was significantly prolonged, whilst the FXII activity (FXII:C) and FXII antigen (FXII:Ag) were extremely reduced. The FXII:C and FXII:Ag of proband's father, mother, sister and son have all reduced to about half of the lower limit of reference range. Genetic testing revealed that the proband has harbored homozygous missense variant of c.1A>G (p.Arg2Tyr) of the start codon in exon 1 of the F12 gene. Sanger sequencing confirmed that his father, mother, sister and son were all heterozygous for the variant, whilst his wife was of the wild type. By bioinformatic analysis, the variant has not been included in the HGMD database. Prediction with SIFT online software suggested the variant is harmful. Simulation with Swiss-Pbd Viewer v4.0.1 software suggested that the variant has a great impact on the structure of FXII protein. Based on the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic.
CONCLUSION
The c.1A>G (p.Arg2Tyr) variant of the F12 gene probably underlay the Congenital FXII deficiency in this pedigree. Above finding has further expanded the spectrum of F12 gene variants and provided a reference for clinical diagnosis and genetic counseling for this pedigree.
Male
;
Female
;
Humans
;
Middle Aged
;
Factor XII/genetics*
;
Pedigree
;
Codon, Initiator
;
East Asian People
;
Mothers
;
Factor XII Deficiency/genetics*
;
Mutation
4.Autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations: a report of 8 cases and literature review.
Xiao-Le WANG ; Ya-Nan TIAN ; Chen CHEN ; Jing PENG
Chinese Journal of Contemporary Pediatrics 2023;25(5):489-496
OBJECTIVES:
To summarize the clinical phenotype and genetic characteristics of children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations.
METHODS:
A retrospective analysis was performed on the medical data of 8 children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations who were diagnosed and treated in the Department of Pediatrics, Xiangya Hospital of Central South University.
RESULTS:
The mean age of onset was 9 months for the 8 children. All children had moderate-to-severe developmental delay (especially delayed language development), among whom 7 children also had seizures. Among these 8 children, 7 had novel heterozygous mutations (3 with frameshift mutations, 2 with nonsense mutations, and 2 with missense mutations) and 1 had 6p21.3 microdeletion. According to the literature review, there were 48 Chinese children with mental retardation caused by SYNGAP1 gene mutations (including the children in this study), among whom 40 had seizures, and the mean age of onset of seizures was 31.4 months. Frameshift mutations (15/48, 31%) and nonsense mutations (19/48, 40%) were relatively common in these children. In terms of treatment, among the 33 children with a history of epileptic medication, 28 (28/33, 85%) showed response to valproic acid antiepileptic treatment and 16 (16/33, 48%) achieved complete seizure control after valproic acid monotherapy or combined therapy.
CONCLUSIONS
Children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations tend to have an early age of onset, and most of them are accompanied by seizures. These children mainly have frameshift and nonsense mutations. Valproic acid is effective for the treatment of seizures in most children.
Child
;
Humans
;
Intellectual Disability/diagnosis*
;
Codon, Nonsense
;
Retrospective Studies
;
Valproic Acid
;
ras GTPase-Activating Proteins/genetics*
;
Mutation
;
Seizures/genetics*
5.Chloroplast genomic characterization and phylogenetic analysis of Castanopsis hystrix.
Guangyu XUE ; Zhiwen DENG ; Xueping ZHU ; Junduo WU ; Shitao DONG ; Xianjin XIE ; Ji ZENG
Chinese Journal of Biotechnology 2023;39(2):670-684
The structure and size of the chloroplast genome of Castanopsis hystrix was determined by Illumina HiSeq 2500 sequencing platform to understand the difference between C. hystrix and the chloroplast genome of the same genus, and the evolutionary position of C. hystrix in the genus, so as to facilitate species identification, genetic diversity analysis and resource conservation of the genus. Bioinformatics analysis was used to perform sequence assembly, annotation and characteristic analysis. R, Python, MISA, CodonW and MEGA 6 bioinformatics software were used to analyze the genome structure and number, codon bias, sequence repeats, simple sequence repeat (SSR) loci and phylogeny. The genome size of C. hystrix chloroplast was 153 754 bp, showing tetrad structure. A total of 130 genes were identified, including 85 coding genes, 37 tRNA genes and 8 rRNA genes. According to codon bias analysis, the average number of effective codons was 55.5, indicating that the codons were highly random and low in bias. Forty-five repeats and 111 SSR loci were detected by SSR and long repeat fragment analysis. Compared with the related species, chloroplast genome sequences were highly conserved, especially the protein coding sequences. Phylogenetic analysis showed that C. hystrix is closely related to the Hainanese cone. In summary, we obtained the basic information and phylogenetic position of the chloroplast genome of red cone, which will provide a preliminary basis for species identification, genetic diversity of natural populations and functional genomics research of C. hystrix.
Phylogeny
;
Genome, Chloroplast
;
Codon/genetics*
;
Genomics
;
Chloroplasts/genetics*
6.Phenotype and genotype analyses of two pedigrees with inherited fibrinogen deficiency.
Kai Qi JIA ; Zheng Xian SU ; Hui Lin CHEN ; Xiao Yong ZHENG ; Man Lin ZENG ; Ke ZHANG ; Long Ying YE ; Li hong YANG ; Yan Hui JIN ; Ming Shan WANG
Chinese Journal of Hematology 2023;44(11):930-935
Objective: To analyze the phenotype and genotype of two pedigrees with inherited fibrinogen (Fg) deficiency caused by two heterozygous mutations. We also preliminarily probed the molecular pathogenesis. Methods: The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and plasma fibrinogen activity (Fg∶C) of all family members (nine people across three generations and three people across two generations) were measured by the clotting method. Fibrinogen antigen (Fg:Ag) was measured by immunoturbidimetry. Direct DNA sequencing was performed to analyze all exons, flanking sequences, and mutated sites of FGA, FGB, and FGG for all members. Thrombin-catalyzed fibrinogen polymerization was performed. ClustalX 2.1 software was used to analyze the conservatism of the mutated sites. MutationTaster, PolyPhen-2, PROVEAN, SIFT, and LRT online bioinformatics software were applied to predict pathogenicity. Swiss PDB Viewer 4.0.1 was used to analyze the changes in protein spatial structure and molecular forces before and after mutation. Results: The Fg∶C of two probands decreased (1.28 g/L and 0.98 g/L, respectively). The Fg∶Ag of proband 1 was in the normal range of 2.20 g/L, while it was decreased to 1.01 g/L in proband 2. Through genetic analysis, we identified a heterozygous missense mutation (c.293C>A; p.BβAla98Asp) in exon 2 of proband 1 and a heterozygous nonsense mutation (c.1418C>G; p.BβSer473*) in exon 8 of proband 2. The conservatism analysis revealed that Ala98 and Ser473 presented different conservative states among homologous species. Online bioinformatics software predicted that p.BβAla98Asp and p.BβSer473* were pathogenic. Protein models demonstrated that the p.BβAla98Asp mutation influenced hydrogen bonds between amino acids, and the p.BβSer473* mutation resulted in protein truncation. Conclusion: The dysfibrinogenemia of proband 1 and the hypofibrinogenemia of proband 2 appeared to be related to the p.BβAla98Asp heterozygous missense mutation and the p.BβSer473* heterozygous nonsense mutation, respectively. This is the first ever report of these mutations.
Humans
;
Afibrinogenemia/genetics*
;
Codon, Nonsense
;
Pedigree
;
Phenotype
;
Fibrinogen/genetics*
;
Genotype
7.Characterization and phylogenetic analysis of complete chloroplast genome of cultivated Qinan agarwood.
Qiao-Zhen LIU ; Jiang-Peng DAI ; Peng-Jian ZHU ; Yue-Xia LIN ; Xiao-Xia GAO ; Shuang ZHU
China Journal of Chinese Materia Medica 2023;48(20):5531-5539
"Tangjie" leaves of cultivated Qinan agarwood were used to obtain the complete chloroplast genome using high-throughput sequencing technology. Combined with 12 chloroplast genomes of Aquilaria species downloaded from NCBI, bioinformatics method was employed to determine the chloroplast genome characteristics and phylogenetic relationships. The results showed that the chloroplast genome sequence length of cultivated Qinan agarwood "Tangjie" leaves was 174 909 bp with a GC content of 36.7%. A total of 136 genes were annotated, including 90 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Sequence repeat analysis detected 80 simple sequence repeats(SSRs) and 124 long sequence repeats, with most SSRs composed of A and T bases. Codon preference analysis revealed that AUU was the most frequently used codon, and codons with A and U endings were preferred. Comparative analysis of Aquilaria chloroplast genomes showed relative conservation of the IR region boundaries and identified five highly variable regions: trnD-trnY, trnT-trnL, trnF-ndhJ, petA-cemA, and rpl32, which could serve as potential DNA barcodes specific to the Aquilaria genus. Selection pressure analysis indicated positive selection in the rbcL, rps11, and rpl32 genes. Phylogenetic analysis revealed that cultivated Qinan agarwood "Tangjie" and Aquilaria agallocha clustered together(100% support), supporting the Chinese origin of Qinan agarwood from Aquilaria agallocha. The chloroplast genome data obtained in this study provide a foundation for studying the genetic diversity of cultivated Qinan agarwood and molecular identification of the Aquilaria genus.
Phylogeny
;
Genome, Chloroplast
;
Codon
;
Molecular Sequence Annotation
;
Thymelaeaceae/genetics*
8.Characteristics of the chloroplast genome of Isopyrum anemonoides.
Rayhangul TURDI ; Lihong MU ; Xinmin TIAN
Chinese Journal of Biotechnology 2022;38(8):2999-3013
In order to characterize the chloroplast genome and phylogenetic relationships of Isopyrum anemonoides, we performed Illumina Hiseq high-throughput sequencing to sequence the complete chloroplast genome of this plant and constructed a whole-genome map based on contig assembly and annotation. The chloroplast genome of I. anemonoides is 161 034 bp in length and has a typical tetrad structure, comprising 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genome also contains a total of 44 dispersed repeat sequences and 47 simple sequence repeats. Among the genome's 53 678 codons, the largest proportion are leucine-encoding codons (5 251), whereas the smallest proportion encode tryptophan (712). Colinear analysis revealed an absence of inversions and rearrangements between I. anemonoides and related species at the chloroplast genome level. Whereas phylogenetic analysis indicated that I. anemonoides did not cluster in a clade with I. manshuricum, it did show a very close phylogenetic relationship with Paraquilegia microphylla. The findings of this study provide basic data that will contribute to further species identification and phylogenetic study of the genus Isopyrum.
Codon
;
Genome, Chloroplast/genetics*
;
Microsatellite Repeats
;
Phylogeny
;
Ranunculaceae/genetics*
9.Chloroplast genome structure characteristics and phylogenetic analysis of Artemisia indica.
Zhao-Hui LAN ; Xu-Fang TIAN ; Yu-Hua SHI ; Ran-Ran GAO ; Qing-Gang YIN ; Li XIANG ; Lan WU
China Journal of Chinese Materia Medica 2022;47(22):6058-6065
Artemisia indica is an important medicinal plant in the Asteraceae family, but its molecular genetic information has been rarely reported. In this study, the chloroplast genome of A. indica was sequenced, assembled, and annotated by the high-throughput sequencing technology, and its sequence characteristics, repeat sequences, codon usage bias, and phylogeny were analyzed. The results showed that the length of the chloroplast genome for A. indica was 151 161 bp, which was a typical circular four-segment structure, including two inverted repeat regions(IRs), a large single-copy(LSC) region, and a small single-copy(SSC) region, with a GC content of 37.47%. A total of 132 genes were annotated, and 114 were obtained after de-duplication, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Fifty long repeat sequences and 191 SSRs were detected in the chloroplast genome of A. indica, and SSRs were mainly single nucleotides. Codon usage bias analysis showed that leucine was the most frequently used amino acid(10.77%) in the chloroplast genome, and there were 30 codons with relative synonymous codon usage(RSCU)>1 and all ended with A/U. The phylogenetic tree constructed based on the chloroplast genomes of the 19 species from the Asteraceae family showed that A. indica and A. argyi were closest in the genetic relationship, and Artemisia species clustered into separate evolutionary branches. The results of this study are expected to provide a theoretical basis for the genetic diversity and resource conservation of Artemisia medicinal plants.
Genome, Chloroplast
;
Phylogeny
;
Artemisia/genetics*
;
Codon/genetics*
;
Base Composition
;
Plants, Medicinal/genetics*
10.Correlation Analysis of FⅧGene Mutation and the Production of FⅧ Inhibitor with Severe Hemophilia A Patients in a Single Medical Center.
Lyu-Kai ZHU ; Xia-Lin ZHANG ; Xiu-E LIU ; Xiu-Yu QIN ; Gang WANG ; Lin-Hua YANG
Journal of Experimental Hematology 2022;30(5):1536-1540
OBJECTIVE:
To investigate the relationship between the type of FⅧgene mutation and the development of FⅧ inhibitors in patients with severe haemophilia A (HA).
METHODS:
The medical records of 172 patients with severe hemophilia A from January 2009 to September 2020 were reviewed. The types of FⅧgene mutations and the production of factor Ⅷ inhibitors were collected and divided into high-risk mutation group ( intron 1 inversions, large deletions, nonsense mutations), low-risk mutation group (missense mutations, small deletions and insertions, splice site mutations) and intron 22 inversions group. The correlation of FⅧgenotype and the production of FⅧ inhibitors in patients with HA were analyzed.
RESULTS:
Among 172 patients with severe HA, 21 cases(12.21%) developed FⅧ inhibitors. The cumulative incidence of FⅧ inhibitor development was 32%(10/31) in high risk group (75% patients with large deletions, 43% patients with intron 1 inversions, 20% patients with nonsense mutations) and 5%(2/43) in low risk group(6% patients with missense mutations, 5% patients with small deletions or insertions and 0% patient with a splice site mutation) and 9%(9/98) in intron 22 inversions group. Compared with the risk of FⅧ inhibitor development in intron 22 inversions group, the risk of FⅧ inhibitor development in high risk group was higher (OR=4.7, 95% CI: 1.7-13.0), the risk of FⅧ inhibitor development in low risk group was equal (OR=0.5, 95% CI: 0.1-2.3). Compared with the risk of inhibitor development in low risk group, the risk of FⅧ inhibitor development in high risk group was higher (OR=9.8, 95% CI: 2.0-48.7).
CONCLUSION
Gene mutations of patients with severe HA in high-risk group which include intron 1 inversions, large deletions, nonsense mutations are a risk factor for FⅧ inhibitor production.
Codon, Nonsense
;
DNA Mutational Analysis
;
Factor VIII/genetics*
;
Hemophilia A/genetics*
;
Humans
;
Introns
;
Mutation

Result Analysis
Print
Save
E-mail