1.Effects of cochlear implantation on vestibular function in patients with large vestibular aqueduct syndrome.
Yinghui DING ; Ling LI ; Fanglei YE ; Le WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):24-28
Objective:This study aimed to compare the effects of cochlear implantation(CI) on vestibular function in patients with large vestibular aqueduct syndrome(LVAS) and in patients with extremely severe deafness with normal inner ear structure. Methods:A total of 28 LVAS patients and 28 patients with normal inner ear structure who suffered from extremely severe deafness were selected. The parameters of caloric tests, bone conduction evoked cervical vestibular-evoked myogenic potentials(cVEMP), bone conduction evoked ocular vestibular-evoked myogenic potentials(oVEMP) and video head impulse tests(v-HIT) were compared between the two groups before and after CI. The data were analyzed using SPSS 26.0 software. Results:There was no significant difference in the results of the preoperative caloric test, v-HIT, and oVEMP(P1, N1) between the LVAS group and the control group(P>0.05). Compared to the control group, the LVAS group exhibited a shorter cVEMP P1[(13.41±0.71)ms vs (16.28±0.89)ms, P<0.000 1], shorter N1[(19.83±0.54)ms vs (28.18±1.56)ms, P<0.000 1], higher amplitude[(123.60±83.80)μV vs (73.92±79.85)μV, P=0.049 4] and higher oVEMP amplitude[(16.60±13.87)μV vs (9.96±10.47)μV, P=0.028 5] before CI. The abnormal rate of caloric test increased in both groups after CI(25.00% vs 57.14%, P=0.028 8, 32.14% vs 82.14%, P=0.000 3, respectively). There was no significant difference in the v-HIT parameters in both groups before and after the operation. As for the LVAS group, there was no statistically significant difference in cVEMP and oVEMP induction rates before and after operation. In the control group, there was a decrease in cVEMP induction rate(96.42% vs 64.28%, P=0.005 2) and oVEMP induction rate(96.42% vs 57.14%, P=0.000 9) after CI. LVAS group showed a shorter cVEMP P1[(13.41±0.71)ms vs (10.30±0.60)ms, P<0.000 1]; shorter cVEMP N1[(19.86±0.53)ms vs (18.97±1.33)ms, P=0.004 7]; decreased amplitude[(124.50±84.86)μV vs (64.35±61.57)μV, P=0.001 0] and shorter oVEMP amplitude[(15.92±13.03)μV vs (9.16±9.20)μV, P=0.009 9] after CI. The oVEMP N1 in the control group was longer than that before operation[(11.73 ± 0.91)ms vs (13.35 ± 2.60)ms, P=0.019 6], whereas there was no significant difference in other VEMP parameters after CI. Conclusion:Before CI, there was no significant difference in the results of the caloric test and v-HIT between the LVAS group and the control group, but the LVAS group exhibited increased sensitivity to acoustic stimulation-induced myogenic potentials. After CI, the function of the semicircular canal was impaired in both groups in the low-frequency area, and remained largely unaffected in the high-frequency area. Additionally, the function of the otolith in the LVAS group was less affected than that in the control group after CI, which may be related to the fact that the enlarged vestibular aqueduct of the LVAS patients acted as the third window of the inner ear.
Humans
;
Vestibular Aqueduct/physiopathology*
;
Cochlear Implantation
;
Male
;
Female
;
Vestibular Evoked Myogenic Potentials
;
Deafness/physiopathology*
;
Child
;
Adolescent
;
Adult
;
Young Adult
;
Hearing Loss, Sensorineural/physiopathology*
;
Vestibular Function Tests
2.Evaluation of inner ear malformation based on high-resolution CT and MRI.
Liangliang LIU ; Kung ZHANG ; Bing WANG ; Qi YANG ; Lei XU ; Yan HAO ; Hui XU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):47-56
Objective:To explore the value of high resolution computed tomography(HRCT) combined with Magnetic Resonance Imaging(MRI) in the diagnosis of inner ear malformation. Methods:HRCT and MRI data of 82 patients with inner ear malformations were analyzed retrospectively. HRCT MPR and CPR reconstruction of the inner ear structure, facial nerve canal and oblique sagittal MRI reconstruction of the internal auditory canal were performed. The inner ear malformations were classified, the conditions of facial nerve canal and cochlear nerve were evaluated. The association between inner ear malformation and cochlear nerve dysplasia were analyzed by Chi-square test with continuity correction. Results:Among the 82 patients with inner ear malformations,there were 49 cases of bilateral symmetry, 11 cases of bilateral asymmetry and 22 cases of unilateral inner ear malformations. Respectively, the most prevalent types were IP-Ⅱ(42.96%), dilatation of atrium aqueduct(18.31%) and malformations of atrium and semicircular canal 19.72%. Out of 50 cases of cochlear malformations,only 3 were isolated cochlear malformations, and the rest were accompanied by other malformations of varying degrees. In the 67 ears examined by MRI, 26(38.81%) had cochlear nerve deficiency(CND), and the incidence of CND varied with different types of inner ear malformations. Out of 142 ears, 28(19.72%) had abnormalities of the facial nerve canal. Conclusion:HRCT combined with MRI can accurately distinguish the types of inner ear malformation and effectively evaluate the facial nerve canal and cochlear nerve, and further provides the important finger and Guide value for the clinician to formulate the reasonable treatment and the operation plan.
Humans
;
Ear, Inner/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Retrospective Studies
;
Female
;
Male
;
Tomography, X-Ray Computed/methods*
;
Child
;
Adolescent
;
Adult
;
Child, Preschool
;
Cochlear Nerve/diagnostic imaging*
;
Facial Nerve/abnormalities*
;
Cochlea/abnormalities*
;
Infant
;
Young Adult
3.Analysis of cochlear reimplantation surgery and factors influencing postoperative auditory and speech function.
Qingling BI ; Zhongyan CHEN ; Yong LYU ; Wenjing YANG ; Xiaoyu XU ; Yan LI ; Yuan LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):419-424
Objective:The aim of this study was to present an institution's experience with cochlear reimplantation(CRI), to assess surgical challenges and post-operative outcomes and to increase the success rate of CRI. Methods:We retrospectively evaluated data from 76 reimplantation cases treated in a tertiary center between 2001 and 2022. Clinical features include caused of CRI, type of failure, surgical issues, and auditory speech performance were analyzed. Categorical Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores were used to evaluate pre-and post-CRI outcomes. Our center's consecutive cohort of 1 126 patients had seven patients, while 69 patients were from other cochlear implant centers. Device failure was the most common cause of CRI(68/76), with the remaining cases including flap complications(3/76), magnet displacement(3/76), secondary meningitis(1/76), and foreign bodies around the implant(1/76). Postoperative auditory and speech outcome improved in 31.6%(24/76) of patients, remained unchanged in 63.2%(48/76), and decreased in CAP and SIR scores in 5.2%(4/76) of patients. Postoperatively, the seven patients with cochlear ossification and fibrosis scored lower on the overall CAP and SIR scale than non-ossification individuals, which is a significant factor in surgical success rates and auditory-speech outcomes. Conclusion:CRI surgery is a challenging but relatively safe procedure, and most reimplanted patients experience favorable postoperative outcomes. Medical complications and intracochlear damage are the main causes of poor postoperative results. Therefore, minimally invasive CI has a positive significance for reducing the difficulty of CRI surgery and improving the CI performance.
Humans
;
Cochlear Implantation/methods*
;
Retrospective Studies
;
Cochlear Implants
;
Male
;
Female
;
Postoperative Period
;
Treatment Outcome
;
Adult
;
Speech
;
Middle Aged
;
Postoperative Complications
;
Replantation
;
Cochlea/surgery*
4.Analysis of complex cochlear implantation electrode repositioning strategies based on intraoperative CT.
Chaoyue ZHAO ; Bo GAO ; Dejun ZHANG ; Lu ZHENG ; Qiuquan WANG ; Pu DAI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):443-452
Objective:To investigate the application value of intraoperative sliding rail computed tomography (CT) in complicated and difficult cochlear implantation by analyzing the cases of complicated and difficult cochlear implantation. Methods:The clinical data of patients with complicated and difficult cochlear implantation assisted by sliding rail CT were retrospectively analyzed, the intraoperative complications and the number of electrode adjustments were summarized, and the patients were followed up. Results:A total of 51 subjects were included in this study, including 46 patients with inner ear malformation, 2 patients with cochlear ossification, there were 7 patients underwent secondary scanning to adjust the electrode and achieved satisfactory implantation position. Conclusion:Intraoperative CT scanning is a reliable adjunctive tool for determining the placement of complex cochlear implantation, and it improves the accuracy of difficult cochlear implantation surgeries.
Humans
;
Cochlear Implantation/methods*
;
Retrospective Studies
;
Tomography, X-Ray Computed
;
Cochlear Implants
;
Male
;
Female
;
Child, Preschool
;
Child
;
Cochlea
;
Electrodes, Implanted
;
Infant
5.The damaging effects of two exposures to 100 dB white noise on myelination of the auditory nerve in mouse cochleae mechanism of repeated noise exposure on myelin sheath of cochlear auditory nerve in mice.
Si ZHANG ; Ke LIU ; Shusheng GONG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):448-452
Objective:This study aims to investigate the mechanism and potential effects of two exposures to 100 dB sound pressure level(SPL) broadband white noise, with a 14-days interval, on the myelin sheath of the cochlear auditory nerve in mice. The research provides experimental evidence for understanding the pathophysiological processes of noise-induced hearing loss and hidden hearing loss. Methods:Fifteen 6-week-old male C57BL/6J mice with normal hearing thresholds were randomly divided into three groups: a control group(no noise exposure), a single noise exposure group, and a double noise exposure group. The single noise exposure group was exposed to 100 dB SPL white noise for 2 hours, and ABR thresholds were measured 1 day(P1) and 14 days(P14) after the exposure. The double noise exposure group was exposed to the same conditions of 100 dB SPL white noise for 2 hours, followed by a second identical exposure 14 days later. ABR thresholds were measured 1 day(P15) and 14 days(P28) after the second exposure. The cochleae of all three groups were then collected for immunofluorescence observation of the basilar membrane and transmission electron microscopy to observe changes in the structure of the auditory nerve myelin sheath. Results:In the single noise exposure group, ABR thresholds at all frequencies were significantly elevated compared to the control group at P1. There were no significant changes in ABR thresholds at any frequency at P14. In the double noise exposure group, ABR thresholds at all frequencies were significantly elevated compared to the control group at P15 and P28(P<0.001). After the first noise exposure, immunofluorescence observation revealed no significant weakening of the auditory nerve myelin sheath signal; transmission electron microscopy showed no significant changes in myelin sheath morphology. However, after the second noise exposure, immunofluorescence observation revealed a weakening of the myelin sheath signal, and transmission electron microscopy showed thinning of the myelin sheath, disruption of the lamellar structure, and separation from the axon, indicating demyelination. Conclusion:Two exposures to 100 dB SPL broadband white noise can lead to damage to the auditory nerve myelin sheath in mice, whereas a single exposure does not cause significant changes.
Animals
;
Male
;
Myelin Sheath/pathology*
;
Mice
;
Cochlear Nerve/pathology*
;
Mice, Inbred C57BL
;
Noise/adverse effects*
;
Hearing Loss, Noise-Induced/physiopathology*
;
Cochlea
;
Evoked Potentials, Auditory, Brain Stem
6.The cochlear extracellular matrix gene mutations and hearing loss.
Qin WANG ; Yongyi YUAN ; Weiju HAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(8):781-788
The extracellular matrix(ECM)is a complex network structure composed of collagen,glycoproteins,and proteoglycans.It not only provides structural support and viscoelasticity to tissues but also participates in cell signaling,responding to environmental forces and signals to mediate tissue remodeling in response to environmental cues. Due to the intricate and precise functions of the inner ear,the perception and transmission of sound rely on the complex interactions between cochlear cell structures and the ECM. In the inner ear,the ECM not only constitutes key structures such as the basilar membranes(BM)and tectorial membranes(TM),which are essential for sound perception,but also regulates cell shape,adhesion,and migration.Certain ECM components interact with cell surface receptors to activate signaling pathways that regulate gene expression.Additionally,the ECM modulates the storage and diffusion of ions and secreted factors, creating concentration gradients.These functions are critical for inner ear development,repair,and function.Thus,the ECM plays a vital role in auditory processes,and abnormalities in ECM are a cause of certain hereditary hearing loss.This review primarily summarizes the ECM genes that lead to hearing loss.
Humans
;
Extracellular Matrix/genetics*
;
Hearing Loss/genetics*
;
Mutation
;
Cochlea
;
Extracellular Matrix Proteins/genetics*
7.Inhibition of the cGAS‑STING Pathway Reduces Cisplatin-Induced Inner Ear Hair Cell Damage.
Ying SUN ; Shengyu ZOU ; Xiaoxiang XU ; Shan XU ; Haiying SUN ; Mingliang TANG ; Weijia KONG ; Xiong CHEN ; Zuhong HE
Neuroscience Bulletin 2025;41(3):359-373
Although cisplatin is a widely used chemotherapeutic agent, it is severely toxic and causes irreversible hearing loss, restricting its application in clinical settings. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. Here, we established in vitro and in vivo ototoxicity models of cisplatin-induced hair cell loss, and our results showed that reducing STING levels decreased inflammatory factor expression and hair cell death. In addition, we found that cisplatin-induced mitochondrial dysfunction was accompanied by cytosolic DNA, which may act as a critical linker between the cyclic GMP-AMP synthesis-stimulator of interferon genes (cGAS-STING) pathway and the pathogenesis of cisplatin-induced hearing loss. H-151, a specific inhibitor of STING, reduced hair cell damage and ameliorated the hearing loss caused by cisplatin in vivo. This study underscores the role of cGAS-STING in cisplatin ototoxicity and presents H-151 as a promising therapeutic for hearing loss.
Cisplatin/toxicity*
;
Animals
;
Nucleotidyltransferases/antagonists & inhibitors*
;
Membrane Proteins/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Mice
;
Hair Cells, Auditory, Inner/pathology*
;
Antineoplastic Agents/toxicity*
;
Mice, Inbred C57BL
;
Hearing Loss/metabolism*
;
Male
;
Ototoxicity/metabolism*
8.Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function.
Yue QIU ; Song GAO ; Xiaoqiong DING ; Jie LU ; Xinya JI ; Wenli HAO ; Siqi CHENG ; Haolinag DU ; Yajun GU ; Chenjie YU ; Cheng CHENG ; Xia GAO
Neuroscience Bulletin 2025;41(3):421-433
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses. To date, there have been few reports on TNFAIP6 levels in the inner ear. To elucidate the precise mechanism, we generated transgenic mouse models with conditional knockout of Tnfaip6 (Tnfaip6 cKO). Evaluation of hair cell morphology and function revealed no significant differences in hair cell numbers or ribbon synapses between Tnfaip6 cKO and wild-type mice. Moreover, there were no notable variations in hair cell numbers or hearing function in noisy environments. Our results indicate that Tnfaip6 does not have a substantial impact on the auditory system.
Animals
;
Mice, Knockout
;
Hair Cells, Auditory, Inner/pathology*
;
Mice
;
Mice, Transgenic
;
Hearing Loss, Noise-Induced
;
Evoked Potentials, Auditory, Brain Stem/physiology*
9.A Novel Functional Method of Protector Screening for Zebrafish Lateral Line Hair Cells via the Acoustic Escape Response.
Ling ZHENG ; Qiaosen SHEN ; Tong ZHAO ; Qingsong LIU ; Zihao HUANG ; Feng ZHAO ; Mengqian ZHANG ; Yongdong SONG ; Daogong ZHANG ; Dong LIU ; Fangyi CHEN
Neuroscience Bulletin 2025;41(9):1537-1552
Zebrafish larvae are useful for identifying chemicals against lateral line (LL) hair cell (HC) damage and this type of chemical screen mainly focuses on searching for protectors against cell death. To expand the candidate pool of HC protectors, a self-built acoustic escape response (AER)-detecting system was developed to apply both low-frequency near-field sound transmission and AER image acquisition/processing modules. The device quickly confirmed the changed LL HC functions caused by most known ototoxins, protectors, and neural transmission modifiers, or knockdown of LL HC-expressing genes. With ten devices wired in tandem, five 'hit' chemicals were identified from 124 cyclin-dependent kinase inhibitors to partially restore cisplatin-damaged AER in less than a day. AS2863619, ribociclib, and SU9516 among the hits, protected the HCs in the mouse cochlea. Therefore, using free-swimming larval zebrafish, the self-made AER-detecting device can efficiently identify compounds that are protective against HC damage, including cell death and loss-of-function.
Animals
;
Zebrafish
;
Hair Cells, Auditory/physiology*
;
Lateral Line System/cytology*
;
Escape Reaction/physiology*
;
Larva
;
Mice
;
Cisplatin/toxicity*
;
Drug Evaluation, Preclinical/methods*
10.Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear.
Jieyu QI ; Wenjuan HUANG ; Yicheng LU ; Xuehan YANG ; Yinyi ZHOU ; Tian CHEN ; Xiaohan WANG ; Yafeng YU ; Jia-Qiang SUN ; Renjie CHAI
Neuroscience Bulletin 2024;40(1):113-126
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Infant, Newborn
;
Humans
;
Hair Cells, Auditory, Inner/physiology*
;
Ear, Inner/physiology*
;
Hair Cells, Auditory/physiology*
;
Regeneration/genetics*
;
Stem Cells

Result Analysis
Print
Save
E-mail