1.An epipolythiodioxopiperazine alkaloid and diversified aromatic polyketides with cytotoxicity from the Beibu Gulf coral-derived fungus Emericella nidulans GXIMD 02509.
Miaoping LIN ; Zhenzhou TANG ; Jiaxi WANG ; Humu LU ; Chenwei WANG ; Yanting ZHANG ; Xinming LIU ; Chenghai GAO ; Yonghong LIU ; Xiaowei LUO
Journal of Zhejiang University. Science. B 2023;24(3):275-280
Marine microorganisms, especially marine fungi, have historically proven their value as a prolific source for structurally novel and pharmacologically active secondary metabolites (Deshmukh et al., 2018; Carroll et al., 2022). The corals constitute a dominant part of reefs with the highest biodiversity, and harbor highly diverse and abundant microbial symbionts in their tissue, skeleton, and mucus layer, with species-specific core members that are spatially partitioned across coral microhabitats (Wang WQ et al., 2022). The coral-associated fungi were very recently found to be vital producers of structurally diverse compounds, terpenes, alkaloids, peptides, aromatics, lactones, and steroids. They demonstrate a wide range of bioactivity such as anticancer, antimicrobial, and antifouling activity (Chen et al., 2022). The genetically powerful genus Emericella (Ascomycota), which has marine and terrestrial sources, includes over 30 species and is distributed worldwide. It is considered a rich source of diverse secondary metabolites with antimicrobial activity or cytotoxicity (Alburae et al., 2020). Notably, Emericella nidulans, the sexual state of a classic biosynthetic strain Aspergillus nidulans, was recently reported as an important source of highly methylated polyketides (Li et al., 2019) and isoindolone-containing meroterpenoids (Zhou et al., 2016) with unusual skeletons.
Animals
;
Aspergillus nidulans
;
Polyketides/chemistry*
;
Anthozoa/microbiology*
;
Anti-Infective Agents/pharmacology*
;
Alkaloids
2.Cembranoids and their bioactivities in soft coral Sarcophyton glaucum.
Min WU ; Kai-Bing ZHOU ; Hao-Fu DAI ; Yan-Bo ZENG
China Journal of Chinese Materia Medica 2023;48(3):707-714
Chemical constituents in soft coral Sarcophyton glaucum were separated and purified by various chromatographic methods. Based on the spectral data, physicochemical properties, and comparison with the data reported in the literature, nine cembranoids, including a new cembranoid named sefsarcophinolide(1) together with eight known cembranoids, namely(+)-isosarcophine(2), sarcomilitatin D(3), sarcophytonolide J(4),(1S,3E,7E,13S)-11,12-epoxycembra-3,7,15-triene-13-ol(5), sarcophytonin B(6),(-)-eunicenone(7), lobophytin B(8), and arbolide C(9), were identified. As revealed by biological activity experiment results, compounds 2-6 had weak acetylcholinesterase inhibitory activity, and compound 5 displayed weak cytotoxicity against K562 tumor cell line.
Animals
;
Anthozoa
;
Acetylcholinesterase
;
Cell Line, Tumor
3.A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells.
Minqi CHEN ; Jinyue LIANG ; Yuan WANG ; Yayue LIU ; Chunxia ZHOU ; Pengzhi HONG ; Yi ZHANG ; Zhong-Ji QIAN
Journal of Zhejiang University. Science. B 2022;23(3):230-240
Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.
Acetylcholinesterase/metabolism*
;
Animals
;
Anthozoa/microbiology*
;
Anti-Inflammatory Agents/pharmacology*
;
Aspergillus/chemistry*
;
Benzaldehydes/pharmacology*
;
Mice
;
RAW 264.7 Cells
;
Signal Transduction
4.Pathogenic Vibrio spp. identified for white syndrome coral disease in Tioman Island Marine Park, Malaysia
Fikri Akmal Khodzori ; Shahbudin Saad ; Nur Nazifah Mansor ; Nur Amalin Nadia Mat Nasir ; Nik Nadiah Nik Abdul Khalid ; Fikri Zhafran Rawi
Malaysian Journal of Microbiology 2021;17(1):69-79
Aims:
Coral diseases have emerged over the last several decades, causing a loss of live coral cover in the Caribbean
and Indo-Pacific reefs. Hence, microbiological and disease cultural techniques are commonly used to investigate their
causative microbial agents. This is the first study to identify the potential of pathogenic Vibrio spp. isolated from
apparently white syndrome (WS) coral disease in Tioman Island Marine Park using biochemical and molecular
techniques.
Methodology and results:
The Vibrio colonies were isolated from 108 samples of WS infected corals (Acropora
cytherea and Montipora aequituberculata) including seawater, sediment and algae found adjacent to infected coral
colonies. A total of one hundred representative Vibrio isolates were characterized and most of them (n=50) were
identified as V. vulnificus, V. alginolyticus and Photobacterium damselae following biochemical analysis. The molecular
analysis revealed six Vibrio spp. (V. coralliilyticus, V. hepatarius, V. brasiliensis, V. tubiashi, V. campbellii, V.
ishigakensis) and one Photobacterium rosenbergii. Vibrio coralliilyticus isolated from all infected coral samples may be
highly responsible for the sign of WS disease.
Conclusion, significance and impact of study
The findings of this study provide baseline data and information on
potential coral pathogens identified in the coastal waters of Tioman Island. Etiological disease study is suggested to
validate their severity and virulence factors in the future.
Vibrio--pathogenicity
;
Anthozoa
5.Rhinophyma on hemangioma: A diagnostic conundrum
Danica-Grace R. Tungol ; Miguel Remigio T. Maralit ; Johannes F. Dayrit ;
Journal of the Philippine Dermatological Society 2020;29(1):93-95
INTRODUCTION: Rhinophyma, aside from persistent centrofacial redness is a major diagnostic criteria for rosacea. Phyma may be mistaken for hypertrophy of tissue due to an underlying hemangioma.
CASE REPORT: A 35-year-old female presented with few erythematous papules on the face and nose 19 years prior to consult. Lesions evolved into multiple erythematous nodules on nose and was mistaken for tissue hypertrophy due to an adjacent congenital hemangioma. Her hemangioma was treated with pulsed dye laser 16 years prior with noted decrease in size and erythema. Recently she noticed enlargement of her nose with persistent redness.
She presented with multiple firm, thick irregularly shaped erythematous nodules with prominent pilosebaceous pores and telangiectasia on the nose. Skin punch biopsy was done which revealed hypertrophy and lysis of sebaceous lobules with a moderately dense inflammatory infiltrate of lymphocytes. Histopathological diagnosis was rhinophyma. Patient was treated with low dose isotretinoin (0.20 mkd) with marked flattening of lesions in just one month.
CONCLUSION: Distinguishing phyma from tissue hypertrophy caused by hemangioma poses as a diagnostic challenge. Careful dermatological examination and histopathological findings will aid in correct diagnosis. Low dose oral isotretinoin is an effective treatment for rhinophyma.
Rhinophyma
;
Isotretinoin
;
Rosacea
;
Hemangioma
;
Hydrozoa
6.The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum.
Fatuma Felix FELICIAN ; Rui-He YU ; Meng-Zhen LI ; Chun-Jie LI ; Hui-Qin CHEN ; Ying JIANG ; Tao TANG ; Wei-Yan QI ; Han-Mei XU
Chinese Journal of Traumatology 2019;22(1):12-20
PURPOSE:
Wound represents a major health challenge as they consume a large amount of healthcare resources to improve patient's quality of life. Many scientific studies have been conducted in search of ideal biomaterials with wound-healing activity for clinical use and collagen has been proven to be a suitable candidate biomaterial. This study intended to investigate the wound healing activity of collagen peptides derived from jellyfish following oral administration.
METHODS:
In this study, collagen was extracted from the jellyfish--Rhopilema esculentum using 1% pepsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fourier transform infrared (FTIR) were used to identify and determine the molecular weight of the jellyfish collagen. Collagenase II, papain and alkaline proteinase were used to breakdown jellyfish collagen into collagen peptides. Wound scratch assay (in vitro) was done to determine migration potential of human umbilical vein endothelial cells (HUVEC) covering the artificial wound created on the cell monolayer following treatment with collagen peptides. In vivo studies were conducted to determine the effects of collagen peptides on wound healing by examining wound contraction, re-epithelialization, tissue regeneration and collagen deposition on the wounded skin of mice. Confidence level (p < 0.05) was considered significant using GraphPad Prism software.
RESULTS:
The yield of collagen was 4.31%. The SDS-PAGE and FTIR showed that extracted collagen from jellyfish was type I. Enzymatic hydrolysis of this collagen using collagenase II produced collagen peptides (CP) and hydrolysis with alkaline proteinase/papain resulted into collagen peptides (CP). Tricine SDS-PAGE revealed that collagen peptides consisted of protein fragments with molecular weight <25 kDa. Wound scratch assay showed that there were significant effects on the scratch closure on cells treated with collagen peptides at a concentration of 6.25 μg/mL for 48 h as compared to the vehicle treated cells. Overall treatment with collagen peptide on mice with full thickness excised wounds had a positive result in wound contraction as compared with the control. Histological assessment of peptides treated mice models showed remarkable sign of re-epithelialization, tissue regeneration and increased collagen deposition. Immunohistochemistry of the skin sections showed a significant increase in β-fibroblast growth factor (β-FGF) and the transforming growth factor-β (TGF-β) expression on collagen peptides treated group.
CONCLUSION
Collagen peptides derived from the jellyfish-Rhopilema esculentum can accelerate the wound healing process thus could be a therapeutic potential product that may be beneficial in wound clinics in the future.
Administration, Oral
;
Animals
;
Collagen
;
administration & dosage
;
isolation & purification
;
metabolism
;
pharmacology
;
Fibroblast Growth Factors
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Male
;
Regeneration
;
Scyphozoa
;
chemistry
;
Skin
;
metabolism
;
Skin Physiological Phenomena
;
Stimulation, Chemical
;
Transforming Growth Factor beta1
;
metabolism
;
Wound Healing
;
drug effects
7.Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum.
Yixian QUAH ; Nor Ismaliza MOHD ISMAIL ; Jillian Lean Sim OOI ; Yang Amri AFFENDI ; Fazilah ABD MANAN ; Lai-Kuan TEH ; Fai-Chu WONG ; Tsun-Thai CHAI
Journal of Zhejiang University. Science. B 2019;20(1):59-70
Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
Amino Acid Sequence
;
Animals
;
Anthozoa/chemistry*
;
Antineoplastic Agents/pharmacology*
;
Chromatography, Gel
;
Chromatography, High Pressure Liquid
;
Chromatography, Reverse-Phase
;
Cytotoxins/pharmacology*
;
Drug Discovery
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Hydrolysis
;
Marine Toxins/pharmacology*
;
Oligopeptides/pharmacology*
;
Solid Phase Extraction
;
Tandem Mass Spectrometry
8.Effects of calcium-binding sites in the S2-S3 loop on human and Nematostella vectensis TRPM2 channel gating processes.
Yu-Huan LUO ; Xia-Fei YU ; Cheng MA ; Fan YANG ; Wei YANG
Journal of Zhejiang University. Science. B 2019;20(12):972-982
As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2-S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2-S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2-S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2-S3 loop of TRPM2 on the TRPM2 gating process.
Animals
;
Asparagine/physiology*
;
Binding Sites
;
Calcium/metabolism*
;
Glutamine/physiology*
;
HEK293 Cells
;
Humans
;
Ion Channel Gating/physiology*
;
Sea Anemones
;
TRPM Cation Channels/physiology*
9.Foodborne Illness Outbreaks in Gyeonggi Province, Korea, Following Seafood Consumption Potentially Caused by Kudoa septempunctata between 2015 and 2016.
Joon Jai KIM ; Sukhyun RYU ; Heeyoung LEE
Osong Public Health and Research Perspectives 2018;9(2):66-72
OBJECTIVES: Investigations into foodborne illness, potentially caused by Kudoa septempunctata, has been ongoing in Korea since 2015. However, epidemiological analysis reporting and positive K septempunctata detection in feces in Korea has been limited. The aim of this study was to provide epidemiologic data analysis of possible food poisoning caused by K septempunctata in Korea. METHODS: This study reviewed 16 Kudoa outbreak investigation reports, including suspected cases between 2015 and 2016 in Gyeonggi province, Korea. Suspected Kudoa foodborne illness outbreak was defined as “evidence of K septempunctata in at least one sample.” The time and place of outbreak, patient symptoms and Kudoa (+) detection rate in feces was analyzed. RESULTS: Kudoa foodborne illness outbreaks occurred in most patients in August (22.6%) and in most outbreaks in April (25%). The attack rate was 53.9% and the average attack rate in patients who had consumed olive flounder was 64.7%. The average incubation period was 4.3 hours per outbreak. Diarrhea was the most common symptom which was reported by 91.5% patients. The Kudoa (+) detection rate in feces was 69.2% of cases. CONCLUSION: Monthly distribution of Kudoa foodborne illness was different from previous studies. The Kudoa (+) detection rate in feces decreased rapidly between 25.5 and 28.5 hours of the time interval from food intake to epidemiologic survey. To identify effective period of time of investigation, we believe additional study with extended number of cases is necessary.
Diarrhea
;
Disease Outbreaks*
;
Eating
;
Feces
;
Flounder
;
Foodborne Diseases
;
Gyeonggi-do*
;
Humans
;
Korea*
;
Myxozoa
;
Olea
;
Seafood*
;
Statistics as Topic
10.Relationship between shipping amounts of olive flounder aquacultured from Jejudo and the reported events of acute food poisoning by Kudoa septempunctata in 2015, South Korea: an ecological study.
Epidemiology and Health 2017;39(1):e2017041-
OBJECTIVES: Confirmation of Kudoa septempunctata (K. septempunctata) as the pathogenic agent causing acute food poisoning remains under debate owing to inconsistencies in the reproducibility of experimental evidence. Higher intake of olive flounder infected with K. septempunctata would result in increased diagnosis of food poisoning by K. septempunctata, if the latter was one of the causal agents of acute food poisoning. The aim was to evaluate the relationship between the shipping amount of olive flounder aquacultured from Jejudo and the incidence of K. septempunctata food poisoning in 2015, Korea. METHODS: Data of shipping amounts between March 2014 and February 2016 and of monthly reported events of Kudoa food poisoning were taken from Jejudo Fish-Culture Fisheries Cooperatives and Korea Centers for Disease Control and Prevention, respectively. Non-parametric correlation analyses were conducted. RESULTS: Shipping amounts indicated the seasonal changes according to variation of consumption. Spearman's rho and Kendall's tau-a between the monthly shipping amounts and the reported events in 2015 were 0.39 (p=0.21) and 0.27 (p=0.20), respectively. CONCLUSIONS: An independent relationship was noted between the shipping amount and the reported events, which contrasted with the claim that the virulence of K. septempunctata caused acute food poisoning.
Bias (Epidemiology)
;
Centers for Disease Control and Prevention (U.S.)
;
Diagnosis
;
Fisheries
;
Flounder*
;
Food Parasitology
;
Foodborne Diseases*
;
Incidence
;
Intestinal Diseases, Parasitic
;
Jeju-do*
;
Korea*
;
Myxozoa
;
Olea*
;
Seasons
;
Ships*
;
Virulence


Result Analysis
Print
Save
E-mail