2.Comprehensive assessment of mismatch repair and microsatellite instability status in molecular classification of endometrial carcinoma.
Yan LIU ; Yu Xiang WANG ; Xiao Jie SUN ; Xia TING ; Rui WU ; Xiao Dan LIU ; Cong Rong LIU
Chinese Journal of Obstetrics and Gynecology 2023;58(10):755-765
Objective: To explore the concordance and causes of different mismatch repair (MMR) and microsatellite instability (MSI) detection results in endometrial carcinoma (EC) molecular typing. Methods: A total of 214 EC patients diagnosed from January 2021 to April 2023 were selected at the Department of Pathology, Peking University Third Hospital. The immunohistochemistry (IHC) results of MMR protein were reviewed. Tumor specific somatic mutations, MMR germline mutations, microsatellite scores and tumor mutation burden (TMB) were detected by next-generation sequencing (NGS) with multi-gene panel. Methylation-specific PCR was used to detect the methylation status of MLH1 gene promoter in cases with deficient MLH1 protein expression. In cases with discrepant results between MMR-IHC and MSI-NGS, the MSI status was detected again by PCR (MSI-PCR), and the molecular typing was determined by combining the results of TMB and MLH1 gene promoter methylation. Results: (1) In this study, there were 22 cases of POLE gene mutation subtype, 55 cases of mismatch repair deficient (MMR-d) subtype, 29 cases of p53 abnormal subtype, and 108 cases of no specific molecular profile (NSMP). The median age at diagnosis of MMR-d subtype (54 years old) and the proportion of aggressive histological types (40.0%, 22/55) were higher than those of NSMP subtype [50 years old and 12.0% (13/108) respectively; all <i>Pi><0.05]. (2) Among 214 patients, MMR-IHC test showed that 153 patients were mismatch repair proficient (MMR-p), 49 patients were MMR-d, and 12 patients were difficult to evaluate directly. MSI-NGS showed that 164 patients were microsatellite stable (MSS; equal to MMR-p), 48 patients were high microsatellite instability (MSI-H; equal to MMR-d), and 2 patients had no MSI-NGS results because the effective sequencing depth did not meet the quality control. The overall concordance between MMR-IHC and MSI-NGS was 94.3% (200/212). All the 12 discrepant cases were MMR-d or subclonal loss of MMR protein by IHC, but MSS by NGS. Among them, 10 cases were loss or subclonal loss of MLH1 and (or) PMS2 protein. Three discrepant cases were classified as POLE gene mutation subtype. In the remaining 9 cases, 5 cases and 3 cases were confirmed as MSI-H and low microsatellite instability (MSI-L) respectively by MSI-PCR, 6 cases were detected as MLH1 gene promoter methylation and 7 cases demonstrated high TMB (>10 mutations/Mb). These 9 cases were classified as MMR-d EC. (3) Lynch syndrome was diagnosed in 27.3% (15/55) of all 55 MMR-d EC cases, and the TMB of EC with MSH2 and (or) MSH6 protein loss or associated with Lynch syndrome [(71.0±26.2) and (71.5±20.1) mutations/Mb respectively] were significantly higher than those of EC with MLH1 and (or) PMS2 loss or sporadic MMR-d EC [(38.2±19.1) and (41.9±24.3) mutations/Mb respectively, all <i>Pi><0.01]. The top 10 most frequently mutated genes in MMR-d EC were PTEN (85.5%, 47/55), ARID1A (80.0%, 44/55), PIK3CA (69.1%, 38/55), KMT2B (60.0%, 33/55), CTCF (45.5%, 25/55), RNF43 (40.0%, 22/55), KRAS (36.4%, 20/55), CREBBP (34.5%, 19/55), LRP1B (32.7%, 18/55) and BRCA2 (32.7%, 18/55). Concurrent PTEN, ARID1A and PIK3CA gene mutations were found in 50.9% (28/55) of MMR-d EC patients. Conclusions: The concordance of MMR-IHC and MSI-NGS in EC is relatively high.The discordance in a few MMR-d EC are mostly found in cases with MLH1 and (or) PMS2 protein loss or MMR protein subclonal staining caused by MLH1 gene promoter hypermethylation. In order to provide accurate molecular typing for EC patients, MLH1 gene methylation, MSI-PCR, MMR gene germline mutation and TMB should be combined to comprehensively evaluate MMR and MSI status.
Female
;
Humans
;
Middle Aged
;
Class I Phosphatidylinositol 3-Kinases/metabolism*
;
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis*
;
DNA Mismatch Repair/genetics*
;
Endometrial Neoplasms/pathology*
;
Microsatellite Instability
;
Mismatch Repair Endonuclease PMS2/genetics*
;
Molecular Typing
3.Mechanism of Wuling Capsules against hepatic fibrosis based on network pharmacology and animal experiments.
Nan LI ; Su-Juan REN ; Rui ZHOU ; Zhong-Xing SONG ; Yan-Ru LIU ; Zhi-Shu TANG ; Jian-Ping ZHOU ; Zhao-Jun CAO
China Journal of Chinese Materia Medica 2023;48(19):5365-5376
The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.
Animals
;
Rats
;
Interleukin-6
;
Network Pharmacology
;
Animal Experimentation
;
Tumor Necrosis Factor-alpha
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Liver Cirrhosis/genetics*
;
Medicine, Chinese Traditional
;
Capsules
;
Class I Phosphatidylinositol 3-Kinases
;
Collagen
;
Drugs, Chinese Herbal/pharmacology*
4.Effect of miR-124a on collagen-induced arthritis in mice and the underlying mechanisms.
Yan GE ; Biling YANG ; Suqing XU ; Xi XIE ; Fen LI ; Jing TIAN
Journal of Central South University(Medical Sciences) 2022;47(4):453-461
OBJECTIVES:
Rheumatoid arthritis (RA) is a chronic autoimmune disease. MicroRNA has been shown to play an important role in RA. MicroRNA-124a (miR-124a) has anti-proliferative and anti-inflammatory effects in RA fibroblast synovial cells. This study aims to explore the effects of miR-124a overexpression on arthritis in collagen-induced arthritis (CIA) mice and the underlying mechanisms.
METHODS:
Bovine type II collagen and complete Ferris adjuvant were used to induce CIA model from DBA/1 mice. Twenty-eight days after initial immunization (D28), CIA mice were randomly divided into a model group, a miR-124a treatment group, and a negative control (NC) group. Physiological saline, miR-124a agomir, and miR-124a agomir NC were injected into the skin at the tail root of mice every 3 days for 4 times, respectively. The degree of joint swelling and arthritis index of mice were recorded accordingly. Sixty-three days after initial immunization (D63), the mice were sacrificed to obtain the synovial tissue of ankle joint. HE staining was used to observe the proliferation of synovial cell, infiltration of inflammatory cell, pannus, and bone erosion of synovial tissues; TUNEL staining was used to detect cell apoptosis; qRT-PCR was used to detect the mRNA expression of <i>miR-124ai>, phosphatidylinositol-3-kinase catalytic subunit alpha (<i>PIK3CAi>) and its downstream genes <i>Bcl-2i> and <i>Baxi>. Immunohistochemistry was used to detect the protein expression of PIK3CA, Bcl-2, and Bax protein in synovial tissues of each group.
RESULTS:
Different degrees of swelling presented in the paws of DBA/1 mice at D28, which indicated the CIA model was constructed successfully. Forty-eight days after initial immunization (D48), the paws of mice in the miR-124a treatment group were only slightly red and swollen, while the paws of mice in the model group and the NC group were obviously red and swollen. The arthritis index of mice in the miR-124a treatment group were decreased significantly compared to the NC group at D51, D53, D59, and D62 (51, 53, 59, 62 days after initial immunization) (all <i>Pi><0.05). Sixty-three days after initial immunization (D63), HE staining indicated that the scores of synovial cell proliferation, inflammatory cell infiltration, synovial pannus, and bone erosion were significantly reduced in the miR-124a treatment group (<i>Pi><0.05 or <i>Pi><0.01), while cell apoptosis was increased in the miR-124a treatment group compared with the model group and NC group (<i>Pi><0.01 or <i>Pi><0.001). Besides, the expression of miR-124a and Bax in the synovial tissue in miR-124a treatment group was significantly higher than those in the model group and NC group (<i>Pi><0.01 or <i>Pi><0.001), while the expressions of PIK3CA and Bcl-2 were decreased (<i>Pi><0.05 or <i>Pi><0.01 or <i>Pi><0.001), and the ratio of Bcl-2 to Bax was significantly decreased (<i>Pi><0.01 or <i>Pi><0.001).
CONCLUSIONS
Overexpression of miR-124a can reduce arthritis in CIA mice bacause it could promote synovial cell apoptosis and inhibit synovial cell proliferation via targeting PIK3CA and regulating its downstream pathways.
Animals
;
Arthritis, Experimental/metabolism*
;
Arthritis, Rheumatoid/genetics*
;
Cattle
;
Cell Proliferation
;
Class I Phosphatidylinositol 3-Kinases/metabolism*
;
Mice
;
Mice, Inbred DBA
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Synovial Membrane
;
bcl-2-Associated X Protein/metabolism*
5.PIK3CA gene mutations in Chinese women with HR+/HER2- breast cancer.
Sha Fei WU ; Xue Fei WANG ; Yuan Yuan LIU ; Chuan XIA ; Zhi Yong LIANG ; Xuan ZENG
Chinese Journal of Pathology 2022;51(12):1246-1250
Objective: To investigate the spectrum of PIK3CA gene mutations in Chinese women with hormone receptor positive and HER2 negative (HR+/HER2-) breast cancer, to provide the genetic evidence for identifying potential beneficiaries from specific PI3K isoform inhibitors in Chinese women with breast cancer and to develop detection strategies. Methods: A total of 365 breast cancer specimens archived at the Peking Union Medical College Hospital, Beijing, China from January 2017 to October 2017 were screened. Among these patients, 186 HR+/HER2- women with invasive breast cancer were collected. PIK3CA gene mutations were detected using next generation sequencing technology. The gene variant features were then analyzed and compared with reported data. Results: Among the 186 HR+/HER2- breast cancer cases, 40 (21.5%,40/186) cases harbored PIK3CA gene mutations. Exons 9 and 20 of PIK3CA mutations occurred in 92.5%(37/40)of the tumors, which included E545K, E545G, Q546K, E542K, Q546R, P539R, E547D, H1047R, H1047L, H1047Q and N1044Y. Only one case harbored the exon 7 C420R mutation. Additionally, exons 1 (F83C) and 5 (G364R) uncommon mutations were discovered respectively in 2 cases. Based on the finding, 85.0% (34/40) of cases with known mutations could be detected using companion diagnostic methods. Moreover, 25.0% (10/40) of patients had two or three variants, which were composed of E726K/N345K, H1047Q/N345K, H1047R/G364R, H1047R/E453K, E545G/E726K, E542K/E726K, E542K/H1047R, E545K/H1047R/H1047L and E545K/E547D. The lymph node positive rate in these patients with PIK3CA mutation was remarkably higher than those without (i.e., wild type, <i>Pi><0.05). Conclusions: In this group of HR+/HER2- breast cancer patients, common PIK3CA gene mutations account for the vast majority of the mutations. New rare variants in PIK3CA are also identified while their clinical significance needs to be further studied in a large cohort and/or multi-center study.
Humans
;
Female
;
Breast Neoplasms/genetics*
;
East Asian People
;
China
;
Class I Phosphatidylinositol 3-Kinases/genetics*
6.A benign lesion similar to breast cancer.
Yan ZHAO ; Wen-Chao WANG ; Ting LU
Chinese Medical Journal 2019;132(2):250-252
7.Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer.
Qing YE ; Fan QI ; Li BIAN ; Shao-Hua ZHANG ; Tao WANG ; Ze-Fei JIANG
Chinese Medical Journal 2017;130(5):522-529
BACKGROUNDThe addition of anti-human epidermal growth factor receptor 2 (HER2)-targeted drugs, such as trastuzumab, lapatinib, and trastuzumab emtansine (T-DM1), to chemotherapy significantly improved prognosis of HER2-positive breast cancer patients. However, it was confused that metastatic patients vary in the response of targeted drug. Therefore, methods of accurately predicting drug response were really needed. To overcome the spatial and temporal limitations of biopsies, we aimed to develop a more sensitive and less invasive method of detecting mutations associated with anti-HER2 therapeutic response through circulating-free DNA (cfDNA).
METHODSFrom March 6, 2014 to December 10, 2014, 24 plasma samples from 20 patients with HER2-positive metastatic breast cancer who received systemic therapy were eligible. We used a panel for detection of hot-spot mutations from 50 oncogenes and tumor suppressor genes, and then used targeted next-generation sequencing (NGS) to identify somatic mutation of these samples in those 50 genes. Samples taken before their first trastuzumab administration and subsequently proven with clinical benefit were grouped into sensitive group. The others were collected after disease progression of the trastuzumab-based therapy and were grouped into the resistant group.
RESULTSA total of 486 single-nucleotide variants from 46 genes were detected. Of these 46 genes, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene c-Kit (KIT), and tumor protein p53 (TP53) were the most common mutated genes. Seven genes, including epidermal growth factor receptor (EGFR), G protein subunit alpha S (GNAS), HRas proto-oncogene (HRAS), mutL homolog 1 (MLH1), cadherin 1 (CDH1), neuroblastoma RAS viral oncogene homolog (NRAS), and NOTCH1, that only occurred m utations in the resistant group were associated with the resistance of targeted therapy. In addition, we detected a HER2 S855I mutation in two patients who had persistent benefits from anti-HER2 therapy.
CONCLUSIONTargeted NGS of cfDNA has potential clinical utility to detect biomarkers from HER2-targeted therapies.
Adolescent ; Adult ; Aged ; Biomarkers, Tumor ; genetics ; Breast Neoplasms ; genetics ; metabolism ; Cadherins ; genetics ; Chromogranins ; genetics ; Class I Phosphatidylinositol 3-Kinases ; Drug Resistance, Neoplasm ; genetics ; Female ; GTP-Binding Protein alpha Subunits, Gs ; genetics ; Humans ; Male ; Middle Aged ; Mutation ; genetics ; Phosphatidylinositol 3-Kinases ; genetics ; Proto-Oncogene Proteins c-kit ; genetics ; Receptor, ErbB-2 ; metabolism ; Receptor, Notch1 ; genetics ; Tumor Suppressor Protein p53 ; genetics ; Young Adult
8.Chitosan/PIK3CA siRNA nanoparticle-mediated PIK3CA gene interference decreases the invasive capacity of gastric cancer cells in vitro.
Xinke ZHOU ; Lu HE ; Min LIANG ; Jifang LIU
Journal of Southern Medical University 2014;34(10):1503-1506
OBJECTIVETo investigate the effect of PIK3CA/siRNA chitosan nanoparticle on the invasiveness of gastric carcinoma and the potential value of PIK3CA/siRNA chitosan nanoparticle in suppressing the metastasis of gastric carcinoma.
METHODSGastric cancer cells were treated with PIK3CA/siRNA nanoparticle (with a diameter of 350 nm), and the efficiency of PIK3CA gene interference was evaluated using Western blotting and real-time PCR. The changes of the invasive capacity of the treated cells was assessed with Transwell assay.
RESULTSPIK3CA/siRNA chitosan nanoparticle efficiently lowered the expression level of PIK3CA and significantly decreased the invasion of BGC823 cells.
CONCLUSIONPIK3CA gene interference mediated by PIK3CA/siRNA chitosan nanoparticle can decrease the invasive capacity of gastric cancer cells in vitro.
Cell Line, Tumor ; Cell Proliferation ; Chitosan ; Class I Phosphatidylinositol 3-Kinases ; Humans ; Nanoparticles ; Phosphatidylinositol 3-Kinases ; genetics ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Stomach Neoplasms ; pathology
9.Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay.
Jian SU ; Xu-Chao ZHANG ; She-Juan AN ; Wen-Zhao ZHONG ; Ying HUANG ; Shi-Liang CHEN ; Hong-Hong YAN ; Zhi-Hong CHEN ; Wei-Bang GUO ; Xiao-Sui HUANG ; Yi-Long WU
Chinese Journal of Cancer 2014;33(7):346-350
As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice.
Adenocarcinoma
;
genetics
;
Carcinoma, Non-Small-Cell Lung
;
genetics
;
Class I Phosphatidylinositol 3-Kinases
;
Genes, erbB-1
;
Genes, erbB-2
;
Genes, ras
;
Humans
;
Mutation
;
PTEN Phosphohydrolase
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins
;
Proto-Oncogene Proteins B-raf
;
Proto-Oncogene Proteins p21(ras)
;
Retrospective Studies
;
ras Proteins
10.Impact of genetic alterations on mTOR-targeted cancer therapy.
Chinese Journal of Cancer 2013;32(5):270-274
Rapamycin and its derivatives (rapalogs), a group of allosteric inhibitors of mammalian target of rapamycin (mTOR), have been actively tested in a variety of cancer clinical trials, and some have been approved by the Food and Drug Administration for the treatment of certain types of cancers. However, the single agent activity of these compounds in many tumor types remains modest. The mTOR axis is regulated by multiple upstream signaling pathways. Because the genes (e.g., PIK3CA, KRAS, PTEN, and LKB1) that encode key components in these signaling pathways are frequently mutated in human cancers, a subset of cancer types may be addicted to a given mutation, leading to hyperactivation of the mTOR axis. Thus, efforts have been made to demonstrate the potential impact of genetic alterations on rapalog-based or mTOR-targeted cancer therapy. This review will primarily summarize research advances in this direction.
Antibiotics, Antineoplastic
;
therapeutic use
;
Cell Line, Tumor
;
Class I Phosphatidylinositol 3-Kinases
;
Humans
;
Mutation
;
Neoplasms
;
drug therapy
;
metabolism
;
PTEN Phosphohydrolase
;
genetics
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Proto-Oncogene Proteins p21(ras)
;
Signal Transduction
;
Sirolimus
;
analogs & derivatives
;
therapeutic use
;
TOR Serine-Threonine Kinases
;
antagonists & inhibitors
;
metabolism
;
ras Proteins
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail