1.CXCR3 counteracts cisplatin-induced muscle atrophy by regulating E3 ubiquitin ligases, myogenic factors, and fatty acid β-oxidation pathways.
Miao-Miao XU ; Xiao-Guang LIU ; Li-Ming LU ; Zhao-Wei LI
Acta Physiologica Sinica 2025;77(2):255-266
This study aims to explore the role and mechanism of CXC chemokine receptor 3 (CXCR3) in cisplatin-induced skeletal muscle atrophy. Wild-type mice were divided into two groups: cisplatin group and control group (treated by normal saline). The results showed that, compared to the control group, the expression levels of CXCR3 mRNA and protein were significantly up-regulated in the skeletal muscle of the cisplatin group, suggesting that CXCR3 may play an important role in the model of cisplatin-induced skeletal muscle atrophy. To further investigate its role and potential mechanisms, CXCR3 knockout mice and wild-type mice were treated with cisplatin to induce skeletal muscle atrophy. The results revealed that CXCR3 knockout not only failed to alleviate cisplatin-induced skeletal muscle atrophy, but also further reduced body weight, skeletal muscle mass, and muscle fiber cross-sectional area. Further analysis showed that, in the cisplatin-induced muscle atrophy model, CXCR3 knockout significantly up-regulated the expression levels of E3 ubiquitin ligases in skeletal muscle and down-regulated the expression levels of myogenic regulatory factors. To explore the molecular mechanism by which CXCR3 gene deletion exacerbated cisplatin-induced skeletal muscle atrophy, transcriptomic sequencing was performed on the atrophied skeletal muscles of wild-type and CXCR3 knockout mice. The results showed that, compared to wild-type mice, 14 genes were significantly up-regulated and 12 genes were significantly down-regulated in the skeletal muscle of CXCR3 knockout mice. Gene set enrichment analysis (GSEA) revealed a significant enrichment of genes related to fatty acid β-oxidation. Quantitative real-time PCR validation results were consistent with the transcriptomic sequencing results. These findings suggest that CXCR3 may counteract cisplatin-induced skeletal muscle atrophy by up-regulating E3 ubiquitin ligases, down-regulating myogenic regulatory factors, and enhancing the recruitment of fatty acid β-oxidation-related genes.
Animals
;
Cisplatin/adverse effects*
;
Muscular Atrophy/physiopathology*
;
Mice
;
Receptors, CXCR3/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mice, Knockout
;
Oxidation-Reduction
;
Fatty Acids/metabolism*
;
Muscle, Skeletal/metabolism*
;
Mice, Inbred C57BL
;
Male
2.Effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice by regulating EGFR/MAPK pathway.
Peng-Fei ZHANG ; Jin-Hua WANG ; Jian-Qing LIANG ; Hui-Juan ZHANG ; Jin-Tian LI
China Journal of Chinese Materia Medica 2025;50(2):472-480
Based on the epidermal growth factor receptor(EGFR)/mitogen-activated protein kinase(MAPK) signaling pathway-mediated cell proliferation, this study explores the effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice. A total of 60 male C57BL/6 mice were randomly divided into a blank group with 10 mice and a modeling group with 50 mice. After modeling, they were randomly divided into the model group, cisplatin group, and low-, medium-, and high-dose groups of cisplatin combined with Guiqi Yiyuan Ointment, with 10 mice in each group. After 14 days of medication, the general condition of the mice was observed; body weight was measured, and organ index and tumor inhibition rate were calculated. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology changes in tumor tissue. Immunohistochemistry was used to detect the positive rate of Ki-67 antigen(Ki-67) and proliferating cell nuclear antigen(PCNA) in tumor tissue. Western blot and real time-quantitative polymerase chain reaction(qPCR) were used to detect the expression of related proteins and mRNA in tumor tissue. Flow cytometry was used to detect the cell cycle of tumor cells in tumor tissue. The results showed that compared with that in the blank group, the general condition of mice in the model group deteriorated; the body weight, as well as thymus and spleen index of mice in the model group decreased after 14 days of medication. Compared with that in the model group, the general condition of mice in the cisplatin group deteriorated, while the condition of mice in the combined groups improved; the body weight, as well as thymus and spleen index of mice in the cisplatin group decreased, while the three indicators in the combined groups increased; the tumor weight of each medication group decreased, and the tumor inhibition rate increased; there were varying degrees of necrosis in tumor cells of each medication group, and the tightness of tumor cells, the increase in the number of cell nuclei and chromatin, and mitosis all decreased. The positive rate of Ki-67 and PCNA, as well as the protein expression and ratio of p-EGFR/EGFR, rat sarcoma viral oncogene homolog(Ras), phosphorylated Raf-1 protein kinase(p-Raf-1)/Raf-1, phosphorylated mitogen-activated protein kinase kinase(p-MEK)/MEK, phosphorylated extracellular signal-regulated kinase(p-ERK)/ERK and the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK all decreased. The proportion of tumor cells in the G_0/G_1 phase of each medication group increased, and that in the S phase decreased. In addition, there was no significant difference in the G_2/M phase. Compared with that of the cisplatin group, the tumor weight of the combined groups decreased, and the tumor inhibition rate increased. The necrosis and mitosis of tumor cells in the combined groups were more pronounced; the positive rate of Ki-67 and PCNA, the protein expression and ratio of p-EGFR/EGFR, Ras, p-Raf-1/Raf-1, p-MEK/MEK, and p-ERK/ERK, as well as the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK in the combined groups all decreased. The proportion of tumor cells in the G_0/G_1 phase of the combined medium-and high-dose groups increased, and that in the S phase decreased. There was no significant difference in the proportion of tumor cells of the combined groups in the G_2/M phase. This indicates that the combination of cisplatin and Guiqi Yiyuan Ointment can enhance the anti-tumor effect of cisplatin on tumor-bearing mice, and the mechanism may be associated with the inhibition of the EGFR/MAPK pathway, which accelerates the arrest of tumor cells in the G_0/G_1 phase, thereby inhibiting the proliferation of tumor cells. At the same time, the study also indicates that Guiqi Yiyuan Ointment may reduce the damage of tumors to mice and the toxic side effects brought by cisplatin chemotherapy.
Animals
;
Male
;
Carcinoma, Lewis Lung/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
ErbB Receptors/genetics*
;
Mice
;
Cisplatin/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Proliferation/drug effects*
;
Ointments/administration & dosage*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Antineoplastic Agents/administration & dosage*
;
Lung Neoplasms/metabolism*
3.Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway.
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):9-16
Objective To study the impacts of curcumin on the proliferation, migration and cisplatin (DDP) resistance of bladder cancer cells by regulating the liver kinase B1-AMP activated protein kinase-microtubule-associated protein 1 light chain 3 (LKB1-AMPK-LC3) signaling pathway. Methods Human bladder cancer cell line T24 was cultured in vitro, and its DDP resistant T24/DDP cells were induced by cisplatin (DDP). After treating T24 and T24/DDP cells with different concentrations of curcumin, the optimal concentration of curcumin was screened by MTT assay. T24 cells were randomly grouped into control group, curcumin group, metformin group, and combination group of curcumin and metformin. After treatment with curcumin and LKB1-AMPK activator metformin, the proliferation, autophagy, migration, and apoptosis of T24 cells in each group were detected by MTT assay, monodansylcadavrine (MDC) fluorescence staining, cell scratch assay, and flow cytometry, respectively. Western blot was used to detect the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24 cells of each group. T24/DDP cells were randomly assigned into control group, curcumin group, metformin group, and combination group of curcumin and metformin. Cells were treated with curcumin and metformin according to grouping and treated with different concentrations of DDP simultaneously. Then, the effect of curcumin on the DDP resistance coefficient of T24/DDP cells was detected by MTT assay. T24/DDP cells were randomly grouped into control group, DDP group, combination groups of DDP and curcumin, DDP and metformin, DDP, curcumin and metformi. After treatment with DDP, curcumin, and metformin, the proliferation, autophagy, migration, apoptosis, drug resistance, and the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24/DDP cells of each group were detected with the same methods. Results Compared with the control group, the activity of T24 cells, relative number of autophagosomes, migration rate, Phosphorylated-LKB1 (p-LKB1)/LKB1, Phosphorylated-AMPK (p-AMPK)/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the curcumin group were lower, and the apoptosis rate of T24 cells was higher; the changes in various indicators in the metformin group were opposite to those in the curcumin group. Compared with the curcumin group, the activity of T24 cells, relative number of autophagosomes, migration rate, p-LKB1/LKB1, p-AMPK/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the combination group of curcumin and metformin were higher, and the apoptosis rate of T24 cells was lower. Compared with the control group, there were no obvious changes in various indicators of T24/DDP cells in the DDP group. Compared with the control group and DDP group, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-glycoprotein (P-gp) protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP and curcumin were lower, and the apoptosis rate of T24/DDP cells was higher; the changes in the above indicators in the combination group of DDP and metformin were opposite to those in the combination group of DDP and curcumin. Compared with the combination group of DDP and curcumin, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-gp protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP, curcumin and metformin were higher, and the apoptosis rate of T24/DDP cells was lower. Conclusion Curcumin can reduce the activity of LKB1-AMPK-LC3 signaling pathway, thereby inhibiting autophagy, proliferation and migration of bladder cancer cells, promoting their apoptosis, and weakening their resistance to DDP.
Humans
;
Cisplatin/pharmacology*
;
Curcumin/pharmacology*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
;
Protein Serine-Threonine Kinases/genetics*
;
AMP-Activated Protein Kinases/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Urinary Bladder Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/drug effects*
;
AMP-Activated Protein Kinase Kinases
;
Microtubule-Associated Proteins/metabolism*
;
Apoptosis/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Metformin/pharmacology*
;
Autophagy/drug effects*
4.Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway.
Da-Ming XIE ; Zhi-Yun LI ; Bing-Kai REN ; Rui GONG ; Dong YANG ; Sheng HUANG
Chinese journal of integrative medicine 2025;31(4):326-335
OBJECTIVE:
To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP).
METHODS:
The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot.
RESULTS:
In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01).
CONCLUSION
Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Abietanes/therapeutic use*
;
Osteosarcoma/enzymology*
;
Cisplatin/therapeutic use*
;
Humans
;
Cell Line, Tumor
;
Animals
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Bone Neoplasms/enzymology*
;
Cell Cycle/drug effects*
;
Xenograft Model Antitumor Assays
;
Mice
;
Drug Resistance, Neoplasm/drug effects*
;
Neoplasm Invasiveness
;
Mice, Inbred BALB C
5.Curcumin Ameliorates Cisplatin-Induced Cardiovascular Injuries by Upregulating ERK/p-ERK Expression in Rats.
Jun-Tao HAO ; Meng-Piao LIN ; Jin WANG ; Feng SONG ; Xiao-Jie BAI
Chinese journal of integrative medicine 2025;31(8):717-725
OBJECTIVE:
To investigate cisplatin-induced cardiovascular toxicity and explore the protective effects and potential mechanism of curcumin co-treatment.
METHODS:
Forty adult male Sprague-Dawley rats were numbered and randomly divided into control group, cisplatin group (7.5 mg/kg, once a week, for 2 weeks), curcumin group (200 mg/kg per day, for 2 weeks) and cisplatin+curcumin group (cisplatin 7.5 mg/kg, once a week, and curcumin 200 mg/kg per day for 2 weeks) by a random number table method, with 10 rats in each group. Cardiac and vascular morphology and functions were assessed using hematoxylin-eosin and Masson's trichrome staining, serum indexes detection, echocardiography, electrocardiogram (ECG), blood pressure monitoring, vascular ring isometric tension measurement, and left ventricular pressure evaluation. The expressions of extracellular signal-regulated kinases (ERK) and phosphorylated-ERK (p-ERK) were analyzed by immunohistochemical staining.
RESULTS:
Cisplatin treatment induced notable cardiac alteration, as evidenced by changes in cardiac morphology, elevated serum enzymes (P<0.05), ECG abnormalities, and increased left ventricular end-diastolic pressure (P<0.05). Meanwhile, cisplatin significantly increased arterial pulse pressure (P<0.01), primarily due to a decrease in diastolic blood pressure. Severe fibrosis was also observed in the thoracic aorta wall. In vascular ring experiments, cisplatin treatment led to a significant reduction in phenylephrine-induced contraction (P<0.05) and acetylcholine-induced relaxation (P<0.01). Notably, Curcumin co-administration significantly alleviated cisplatin-induced cardiovascular damages, as demonstrated by improvement in these parameters. Furthermore, ERK expression in the myocardium and p-ERK expression in vascular smooth muscle cells were significantly upregulated following curcumin co-treatment.
CONCLUSIONS
Curcumin protects the heart and vasculature from cisplatin-induced damages, likely by upregulating ERK/p-ERK expression. These findings suggest that curcumin may serve as a promising therapeutic strategy for mitigating cisplatin-associated cardiovascular toxicity during tumor chemotherapy. In vitro cell culture experiments are needed to clarify the underlying mechanism.
Animals
;
Curcumin/therapeutic use*
;
Cisplatin/adverse effects*
;
Rats, Sprague-Dawley
;
Male
;
Up-Regulation/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Phosphorylation/drug effects*
;
Electrocardiography
;
Blood Pressure/drug effects*
;
Rats
;
MAP Kinase Signaling System/drug effects*
6.Lichong Xiaozheng Granules enhances cisplatin sensitivity of ovarian cancer xenografts in rats by regulating adenine nucleotide translocator 3-mediated mitochondrial apoptosis.
Yiliu CHEN ; Min MA ; Ran SU ; Yinbin ZHU ; Qing FENG ; Jiali LUO ; Weifeng FENG ; Xianxin YAN
Journal of Southern Medical University 2025;45(11):2309-2319
OBJECTIVES:
To investigate the molecular mechanism by which Lichong Xiaozheng Granules (LCXZ) sensitize ovarian cancer to cisplatin (DDP) treatment.
METHODS:
LC-MS analysis was used to identify the blood components of LCXZ after its administration in mice via gavage. In a BALB/c mouse model bearing subcutaneous ovarian cancer xenografts, the effects of daily gavage of distilled water (control group), intraperitoneal injection of DDP (5 mg/kg) once a week, or both DDP injection and daily LCXZK gavage (15 g/kg) on tumor growth were evaluated. Histopathological changes in the xenografts and kidneys were assessed with HE staining. RNA-seq was performed to identify the differentially expressed genes followed by KEGG pathway analysis. The changes in mitochondrial ultrastructure and expressions of mitochondrial apoptosis-related were examined with transmission electron microscopy and Western blotting.
RESULTS:
A total of 218 blood-borne components of LCXZ were detected by LC-MS. In the tumor-bearing mice, treatments with DDP and DDP combined with LCXZ redcued the tumor volume by 60.3% and 72.6% compared with that in the control group, respectively. Transcriptomic analysis revealed significantly upregulated ANT3 expression in both the two treatment groups. Molecular docking indicated that the main active components of LCXZ were capable of binding to adenine nucleotide translocator 3 (ANT3) with binding energies below -6 kcal/mol. Transmission electron microscopy showed obvious mitochondrial swelling and outer-membrane damage in the tumor cells in DDP-treated mice, and these changes were more pronounced in the combined treatment group. The expression levels of BAX, ANT3, cleaved caspase-3 and cleaved caspase-9 were increased, whereas BCL-2 expression was decreased significantly in the tumor cells in both the DDP and DDP+LCXZ groups.
CONCLUSIONS
LCXZ enhances the therapeutic efficacy of cisplatin against ovarian cancer xenografts in mice by promoting mitochondrial dysfunction and activating apoptotic signaling pathways via upregulating ANT3.
Animals
;
Female
;
Cisplatin/pharmacology*
;
Ovarian Neoplasms/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred BALB C
;
Mice
;
Rats
;
Xenograft Model Antitumor Assays
;
Humans
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacology*
7.Lycium barbarum polysaccharides alleviates cisplatin-induced granulosa cell injury by downregulating miR-23a.
Liuqing LIU ; Kun WANG ; Xueqing WANG ; Bingxin DU
Journal of Southern Medical University 2025;45(11):2340-2349
OBJECTIVES:
To evaluate the protective effect of Lycium barbarum polysaccharides (LBP) against cisplatin-induced ovarian granulosa cell injury and investigate its possible mechanisms.
METHODS:
Human granulosa-like tumor cell line (KGN) were treated with 2.5 µg/mL cisplatin for 24 h, followed by treatment with 100, 500, and 1000 mg/L LBP, and the changes in cell viability, apoptosis, level of anti-Müllerian hormone (AMH), and cell ultrastructure were detected with CCK-8 assay, flow cytometry, ELISA and transmission electron microscopy. The cellular expressions of Bax, caspase-3, Bcl-2, and the PI3K/AKT pathway proteins were analyzed using Western blotting, and the expression of miR-23a was detected with RT-qPCR. KGN cell models with lentivirus-mediated miR-23a overexpression or knockdown were used to verify the therapeutic mechanism of LBP.
RESULTS:
Cisplatin treatment significantly inhibited cell viability, induced apoptosis, decreased AMH level, caused ultrastructural abnormalities, increased Bax and caspase-3 expression, and lowered Bcl-2 expression in KGN cells. Cisplatin also suppressed the activation of the PI3K/AKT signaling pathway and upregulated miR-23a expression in the cells. LBP intervention obviously alleviated cisplatin-induced injuries in KGN cells, and in particular, LBP treatment at the medium dose for 24 h significantly improved KGN cell viability, reduced apoptosis, enhanced their endocrine function, and ameliorated ultrastructural abnormalities. Mechanistically, medium-dose LBP obviously activated the PI3K/AKT pathway by downregulating miR-23a in cisplatin-treated cells, subsequently inhibiting Bax and caspase-3 while upregulating Bcl-2. Overexpression of miR-23a weakened while knockdown of miR-23a significantly enhanced the protective effects of LBP.
CONCLUSIONS
LBP alleviates cisplatin-induced apoptosis in KGN cells by inhibiting miR-23a expression and activating the PI3K/AKT pathway, suggesting a potential therapeutic strategy for ovarian function preservation.
Humans
;
Cisplatin/adverse effects*
;
MicroRNAs/genetics*
;
Female
;
Granulosa Cells/cytology*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Down-Regulation
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
8.Inhibition of the cGAS‑STING Pathway Reduces Cisplatin-Induced Inner Ear Hair Cell Damage.
Ying SUN ; Shengyu ZOU ; Xiaoxiang XU ; Shan XU ; Haiying SUN ; Mingliang TANG ; Weijia KONG ; Xiong CHEN ; Zuhong HE
Neuroscience Bulletin 2025;41(3):359-373
Although cisplatin is a widely used chemotherapeutic agent, it is severely toxic and causes irreversible hearing loss, restricting its application in clinical settings. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. Here, we established in vitro and in vivo ototoxicity models of cisplatin-induced hair cell loss, and our results showed that reducing STING levels decreased inflammatory factor expression and hair cell death. In addition, we found that cisplatin-induced mitochondrial dysfunction was accompanied by cytosolic DNA, which may act as a critical linker between the cyclic GMP-AMP synthesis-stimulator of interferon genes (cGAS-STING) pathway and the pathogenesis of cisplatin-induced hearing loss. H-151, a specific inhibitor of STING, reduced hair cell damage and ameliorated the hearing loss caused by cisplatin in vivo. This study underscores the role of cGAS-STING in cisplatin ototoxicity and presents H-151 as a promising therapeutic for hearing loss.
Cisplatin/toxicity*
;
Animals
;
Nucleotidyltransferases/antagonists & inhibitors*
;
Membrane Proteins/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Mice
;
Hair Cells, Auditory, Inner/pathology*
;
Antineoplastic Agents/toxicity*
;
Mice, Inbred C57BL
;
Hearing Loss/metabolism*
;
Male
;
Ototoxicity/metabolism*
9.Study of the clinical significance of ETAR mRNA expression in high-grade serous ovarian cancer and the inhibitory effect of ETAR derived fusion polypeptide on cancer progression.
Yan Ling ZHANG ; Xiao Kun XIA ; Meng ZHANG
Chinese Journal of Obstetrics and Gynecology 2023;58(12):930-938
Objective: To investigate the clinical significance of endothelin A receptor (ETAR) expression in high-grade serous ovarian carcinoma (HGSOC). To design ETAR carboxyl terminal (ETAR-C) amino acids derived polypeptide and to study the inhibitory effect on ovarian epithelial carcinoma cells in vitro. Methods: (1) A total of 126 patients who received surgical treatment and were diagnosed with HGSOC by postoperative pathological examination in Central Hospital of Xuzhou from January 1, 2007 to December 31, 2017 were selected. All patients had completed clinicopathological data and follow-up data. Cancer tissue samples were collected and ETAR mRNA expression in HGSOC tissues was detected by reverse transcript-PCR. The clinical significance was analyzed. (2) ETAR-C fusion polypeptide was designed based on the sequence of carboxyl terminal amino acids of ETAR, expressed and purified in vitro. The effects of ETAR-C fusion polypeptide on migration and invasion ability of ovarian cancer SKOV3 and CAOV3 cells were detected by scratch test and invasion test, respectively. The effect of ETAR-C fusion polypeptide on chemosensitivity of cisplatin-resistant ovarian cancer SKOV3/cDDP and CAOV3/cDDP cells was determined by methyl thiazolyl tetrazolium (MTT) colorimetric assay. The effect of ETAR-C fusion polypeptide on β-arrestin-1 expression in ovarian cancer SKOV3 and CAOV3 cells was detected by western blot. Results: (1) The relative expression level of ETAR mRNA in HGSOC tissues was 18.6±5.1. Patients with HGSOC were divided into high ETAR mRNA expression (n=76) and low ETAR mRNA expression (n=50) with 61.7% as cut-off value analyzed by X-Tile software. High expression of ETAR mRNA was significantly correlated with abdominal water volume, platinum drug resistance, and cancer antigen 125 (CA125) value in HGSOC patients (all P<0.05), but was not related to the age of patients with HGSOC and the size of postoperative residual lesions (all P>0.05). The 5-year progression free survival rates were 18.4% and 28.0%, and the 5-year overall survival rates were 38.2% and 52.0% in HGSOC patients with high and low ETAR mRNA expression respectively, there were statistically significant differences (P=0.046, P=0.034). (2) The results of scratch test and invasion test showed that the scratch healing rate and cell invasion rate of SKOV3 or CAOV3 cells treated with endothelin-1 (ET-1) and ET-1+ETAR-C were respectively compared, and the differences were statistically significant (all P<0.05). MTT assay showed that the inhibition rates of ETAR-C fusion polypeptide treated in SKOV3/cDDP and CAOV3/cDDP cells were significantly higher than those of control cells after the addition of 4, 6, 8, 10, 12, and 24 μg/ml cisplatin (all P<0.05). Western blot analysis showed that the relative expression levels of β-arrestin-1 in SKOV3 or CAOV3 cells treated with ET-1 and ET-1+ETAR-C were 1.85±0.09 and 1.13±0.09 (SKOV3 cells), 2.14±0.15 and 1.66±0.12 (CAOV3 cells), respectively. The differences were statistically significant (all P<0.05). Conclusions: The prognosis of HGSOC patients with high expression of ETAR mRNA is significantly worse than those with low expression of ETAR mRNA. ETAR might be a new target for HGSOC treatment. The ETAR-C fusion polypeptide that interferes with the interaction of ETAR and β-arrestin-1 has good inhibitory effect on ovarian cancer cells in vitro, and might have clinical application potential.
Female
;
Humans
;
Amino Acids/therapeutic use*
;
beta-Arrestins/therapeutic use*
;
Cell Line, Tumor
;
Cisplatin/pharmacology*
;
Clinical Relevance
;
Ovarian Neoplasms/pathology*
;
Receptor, Endothelin A/therapeutic use*
;
RNA, Messenger/metabolism*
10.High expression of MYH9 inhibits apoptosis of non-small cell lung cancer cells through activating the AKT/c-Myc pathway.
Fang LIU ; Lanzhu PENG ; Jingle XI
Journal of Southern Medical University 2023;43(4):527-536
OBJECTIVE:
To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).
METHODS:
Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.
RESULTS:
MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).
CONCLUSION
High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cisplatin/pharmacology*
;
Cytoskeletal Proteins/metabolism*
;
Lung Neoplasms/metabolism*
;
Mice, Nude
;
Myosin Heavy Chains/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail