1.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
2.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
3.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
4.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
5.Molecular Characterization of New Recombinant Human Adenoviruses Detected in Children with Acute Respiratory Tract Infections in Beijing, China, 2022-2023.
Yi Nan GUO ; Ri DE ; Fang Ming WANG ; Zhen Zhi HAN ; Li Ying LIU ; Yu SUN ; Yao YAO ; Xiao Lin MA ; Shuang LIU ; Chunmei ZHU ; Dong QU ; Lin Qing ZHAO
Biomedical and Environmental Sciences 2025;38(9):1071-1081
OBJECTIVE:
Recombination events are common and serve as the primary driving force of diverse human adenovirus (HAdV), particularly in children with acute respiratory tract infections (ARIs). Therefore, continual monitoring of these events is essential for effective viral surveillance and control.
METHODS:
Respiratory specimens were collected from children with ARIs between January 2022 and December 2023. The penton base, hexon, and fiber genes were amplified from HAdV-positive specimens and sequenced to determine the virus type. In cases with inconsistent typing results, genes were cloned into the pGEM-T vector to detect recombination events. Metagenomic next-generation sequencing (mNGS) was performed to characterize the recombinant HAdV genomes.
RESULTS:
Among 6,771 specimens, 277 (4.09%, 277/6,771) were positvie for HAdV, of which 157 (56.68%, 157/277) were successfully typed, with HAdV-B3 being the dominant type (91.08%, 143/157), and 14 (5.05%, 14/277) exhibited inconsistent typing results, six of which belonged to species B. The penton base genes of these six specimens were classified as HAdV-B7, whereas their hexon and fiber genes were classified as HAdV-B3, resulting in a recombinant genotype designated P7H3F3, which closely resembled HAdV-B114. Additionally, a partial gene encoding L1 52/55 kD was identified, which originated from HAdV-B16.
CONCLUSION
A novel recombinant, P7H3F3, was identified, containing sequences derived from HAdV-B3 and HAdV-B7, which is similar to HAdV-B114, along with additional sequences from HAdV-B16.
Humans
;
Adenoviruses, Human/isolation & purification*
;
Respiratory Tract Infections/epidemiology*
;
Child, Preschool
;
Child
;
Recombination, Genetic
;
Male
;
Beijing/epidemiology*
;
Infant
;
Female
;
Phylogeny
;
Adenovirus Infections, Human/epidemiology*
;
Acute Disease
;
Genome, Viral
6.Hygienic investigation and analysis of escape room-style venues in Yangpu District, Shanghai
Huabin SONG ; Chunmei TAO ; Yan YANG ; Zhe SUN ; Chen ZHANG ; Xue HAN
Shanghai Journal of Preventive Medicine 2024;36(6):570-573
ObjectiveTo investigate and analyze the public health status of escape room-style venues in Yangpu District, Shanghai. MethodsReferring to the hygiene standards and testing methods for public places, an investigation of the current situation and environmental monitoring were conducted in 15 escape room-style venues in Yangpu District, which involved exploring the changes in physical, chemical, and microbial indicators before and after the game. ResultsThe hygiene condition of escape room-style venues in Yangpu District was generally good, with all 19 monitoring indicators not exceeding the indoor standards. The indoor carbon dioxide (CO2) and formaldehyde concentrations increased significantly after the game but did not exceed the standards. ConclusionThe hygiene condition of escape room-style venues in Yangpu District is good. However, potential public health risks were identified in four aspects: site selection and design, length of the game, cross-contamination, and training and management.
7.Protective effects and mechanism of penehyclidine hydrochloride on myocardial ischemia-reperfusion injury in mice
Chunmei JIA ; Chenxue MENG ; Baohui ZHANG ; Shuai HAN ; Congna ZI
China Pharmacy 2024;35(24):3010-3015
OBJECTIVE To investigate the protective effects and potential mechanism of penehyclidine hydrochloride (PHC) on myocardial ischemia-reperfusion (I/R) injury in mice through the macrophage migration inhibitory factor (MIF)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathways. METHODS Male C57BL/6 mice were randomly divided into sham operation group, I/R group, I/R+PHC group (PHC 20 μg/kg), I/R+ISO-1 group (MIF inhibitor 35 mg/kg), I/R+ PHC+ISO-1 group (with the same dosage as each single drug group), with 8 mice in each group. Except for the sham operation group, the myocardial I/R injury model was prepared by coronary artery ligation. Thirty minutes before ligation, mice in each drug group were injected with 1 mL of the corresponding drug solution through the tail vein. After 120 min of reperfusion, the levels of cardiac function indexes [heart rate, stroke volume, ejection fraction, cardiac output, left ventricular posterior wall thickness in systole (LVPWs), left ventricular posterior wall thickness in diastole (LVPWd)], serum inflammatory factors [interleukin-6 (IL- 6), IL-10, tumor necrosis factor-α (TNF-α)] in mice were detected in each group; the pathological changes and ultrastructure of myocardial tissue were observed, and the protein expressions of B cell lymphoma-2 (Bcl-2), phosphorylated AMPKα (p-AMPKα) and MIF in myocardial tissue were detected. RESULTS Compared with the sham operation group, the myocardial cells in the I/R group were loosely arranged, with severe infiltration of inflammatory cells and obvious mitochondrial damage. Serum levels of IL-6 and TNF-α and protein expression of p-AMPKα in myocardial tissue were significantly increased or upregulated, while heart rate, stroke volume, ejection fraction, cardiac output, LVPWd and serum level of IL-10 were significantly decreased (P<0.05). Compared with the I/R group, the myocardial tissue lesions in the I/R+PHC group were alleviated; serum levels of IL-6 and TNF-α were decreased significantly, while heart rate, stroke volume, ejection fraction, cardiac output, LVPWs, LVPWd, serum level of IL-10, and protein expressions of Bcl-2, p- AMPKα and MIF in myocardial tissue were significantly increased or upregulated (P<0.05). However, myocardial tissue lesions of mice in the I/R+ISO-1 group worsened, with most quantitative indicators significantly deteriorating (P<0.05); MIF inhibitor could generally reverse the protective effect of PHC on I/R mice (P<0.05). CONCLUSIONS PHC can improve cardiac function, reduce myocardial inflammation, and restore the ultrastructure of myocardial tissue in I/R mice. These effects may be related to the activation of the MIF/AMPK signaling pathway.
8.Effect of ursodeoxycholic acid on symptoms after severe acute respiratory syndrome coronavirus 2 infection in patients with primary biliary cholangitis and their family members
Gui JIA ; Chunmei YANG ; Xiufang WANG ; Juan DENG ; Ruiqing SUN ; Linhua ZHENG ; Yulong SHANG ; Ying HAN
Journal of Clinical Hepatology 2024;40(7):1370-1374
Objective To investigate the effect of ursodeoxycholic acid(UDCA)on the symptoms after severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection in patients with primary biliary cholangitis(PBC)and their family member.Methods A questionnaire survey was conducted to collect related information from 171 PBC patients who attended The First Affiliated Hospital of Air Force Medical University before March 22,2023 and 128 family members,including demographic information,comorbidities,UDCA administration,SARS-CoV-2 infection,vaccination,symptoms,therapeutic medication,and the changes in liver disease-related symptoms.The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups,and the chi-square test or the Fisher's exact test was used for comparison of categorical data between two groups.Results The median age was 51 years in the PBC patients and 49 years in the family members,with no significant difference between the two groups(P>0.05).Compared with the family member group,the PBC group had significantly lower body mass index(22.2±2.4 kg/m2 vs 23.3±2.9 kg/m2,P<0.001)and proportion of male individuals(10%vs 55%,P<0.001).All PBC patients received UDCA at a dose of 13—15 mg/kg,and SARS-CoV-2 infection rate was 100%in both groups.The family members had a significantly higher SARS-CoV-2 vaccination rate than the PBC patients(91%vs 57%,P<0.001).Compared with the family members,the PBC patients had significantly milder symptoms of sneezing,nasal obstruction,chest pain,and abnormal taste(P<0.05).Compared with the family members,the PBC patients had significantly lower rates of use of compound cold medicine(11%vs 20%,P<0.05)and Lianhua Qingwen capsules(12%vs 21%,P<0.05).For the PBC patients after SARS-CoV-2 infection,the liver disease-related symptoms such as fatigue,abdominal distension,dry mouth and dry eyes,pruritus,and yellow skin were aggravated by 37%,2%,27%,10%,and 3%,respectively.Conclusion Compared with the immediate family members of PBC patients who do not take UDCA,the PBC patients receiving UDCA do not show a reduction in SARS-CoV-2 infection rate,but UDCA may have a certain effect on alleviating infection-related symptoms in such patients.PBC patients may still experience the aggravation of liver disease-related symptoms after SARS-CoV-2 infection,and the long-term effect on PBC patients after SARS-CoV-2 infection should be taken seriously in clinical practice.
9.Mechanism of benzyl isothiocyanate in the treatment of undifferentiated thyroid cancer
Chunmei MA ; Duo HAN ; Huiying ZHANG ; Lei YANG ; Dihua LI ; Qicheng ZHANG ; Yan WANG ; Ke XU ; Qiang JIA ; Wei ZHENG ; Jian TAN ; Zhaowei MENG
Chinese Journal of Endocrinology and Metabolism 2024;40(11):966-977
Objective:To investigate the mechanism of benzyl isothiocyanate(BITC) in the treatment of anaplastic thyroid cancer(ATC).Methods:Using network pharmacological analysis, key targets of BITC and ATC were screened, followed by GO and KEGG enrichment analysis. In order to validate the findings, AutoDock software was used to dock BITC and ATC key targets. BITC was applied to two ATC cell lines(8505C and CAL-62). Flow cytometry was used to analyze cell apoptosis. Autophagy inhibitors hydroxychloroquine sulfate(HCQ) and 3-methyladenine(3MA) were used in combination with BITC. Real-time quantitative PCR was conducted to detect the gene level of LC3B, while Western blotting was utilized to examine the expression of NF-κB, LC3B Ⅱ, Beclin-1, and Bcl-2. In animal experiments, a mouse tumor model was constructed using CAL-62 cells, treated with intraperitoneal injections of BITC(100 mg/kg) and normal saline respectively, administered every other day for a total of 21 days. Immunoblotting of tumor tissue was performed to detect the expression of LC3B Ⅱ, Bcl-2, Beclin-1, and NF-κB.Results:A total of 10 key targets with binding energies≤-4.0 kcal/mol were identified. KEGG analysis showed that these genes are mainly involved in NF-κB signaling pathway and apoptosis. BITC inhibited ATC cells with IC50 values of 27.56 μmol/L for 8505C and 28.30 μmol/L for CAL-62. The expression levels of NF-κB, Beclin-1, and Bcl-2 decreased, while LC3B Ⅱ and LC3B gene expression increased. Combining 3MA with BITC enhanced cell inhibition LC3B Ⅱ expression. HCQ increased LC3B Ⅱ expression without enhancing cell and viability inhibition. In the mouse tumor model, compared to the control group, the treatment group had higher LC3B Ⅱ and lower Bcl-2, Beclin-1, and NF-κB levels.Conclusion:BITC could inhibit the growth of ATC cells in vitro and in vivo, disrupt the autophagy degradation, and inhibit the NF-κB pathway.
10.Gastrin attenuates sepsis-induced myocardial dysfunction by down-regulation of TLR4 expression in macrophages.
Dandong FANG ; Yu LI ; Bo HE ; Daqian GU ; Mingming ZHANG ; Jingwen GUO ; Hongmei REN ; Xinyue LI ; Ziyue ZHANG ; Ming TANG ; Xingbing LI ; Donghai YANG ; Chunmei XU ; Yijie HU ; Hongyong WANG ; Pedro A JOSE ; Yu HAN ; Chunyu ZENG
Acta Pharmaceutica Sinica B 2023;13(9):3756-3769
Myocardial dysfunction is the most serious complication of sepsis. Sepsis-induced myocardial dysfunction (SMD) is often associated with gastrointestinal dysfunction, but its pathophysiological significance remains unclear. The present study found that patients with SMD had higher plasma gastrin concentrations than those without SMD. In mice, knockdown of the gastrin receptor, cholecystokinin B receptor (Cckbr), aggravated lipopolysaccharide (LPS)-induced cardiac dysfunction and increased inflammation in the heart, whereas the intravenous administration of gastrin ameliorated SMD and cardiac injury. Macrophage infiltration plays a significant role in SMD because depletion of macrophages by the intravenous injection of clodronate liposomes, 48 h prior to LPS administration, alleviated LPS-induced cardiac injury in Cckbr-deficient mice. The intravenous injection of bone marrow macrophages (BMMs) overexpressing Cckbr reduced LPS-induced myocardial dysfunction. Furthermore, gastrin treatment inhibited toll-like receptor 4 (TLR4) expression through the peroxisome proliferator-activated receptor α (PPAR-α) signaling pathway in BMMs. Thus, our findings provide insights into the mechanism of the protective role of gastrin/CCKBR in SMD, which could be used to develop new treatment modalities for SMD.

Result Analysis
Print
Save
E-mail