1.N-acetylneuraminic acid promotes ferroptosis of H9C2 cardiomyocytes with hypoxia/reoxygenation injury by inhibiting the Nrf2 axis.
Chunfei JI ; Zongchao ZUO ; Jun WANG ; Miaonan LI
Journal of Southern Medical University 2025;45(1):72-79
OBJECTIVES:
To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).
METHODS:
H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration. The cells were then subjected to H/R injury followed by treatment with Neu5Ac, Fer-1 (a ferroptosis inhibitor), or both. The changes in SOD activity, intracellular Fe2+ and lipid ROS levels in the cells were evaluated, and the cellular expressions of Nrf2, GPX4, HO-1, FSP1, and xCT proteins were detected using Western blotting.
RESULTS:
Following hypoxia and glucose deprivation for 8 h, the cells with reoxygenation for 6 h, as compared with other time lengths of reoxygenation except for 9 h, showed the lowest expression levels of Nrf2, GPX4, HO-1, and FSP1 proteins (P<0.001). Neu5Ac treatment of dose-dependently decreased the viability of the cells with H/R injury with an IC50 of 30.07 mmol/L. Reoxygenation for 3 h with normal glucose supplementation and a Neu5Ac concentration of 30 mmol/L were selected as the optimal conditions in the subsequent experiments. The results showed that Neu5Ac could significantly increase SOD activity, Fe2+ and lipid ROS levels and reduce Nrf2, GPX4, HO-1, and FSP1 protein expressions in H9C2 cells with H/R injury, but its effects were significantly attenuated by treatment with Fer-1.
CONCLUSIONS
Neu5Ac exacerbates ferroptosis of myocardial cells with H/R injury by inhibiting the Nrf2 axis to promote the production of ROS and lipid ROS.
Ferroptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Animals
;
NF-E2-Related Factor 2/metabolism*
;
Rats
;
N-Acetylneuraminic Acid/pharmacology*
;
Cell Hypoxia
;
Reactive Oxygen Species/metabolism*
;
Cell Line
;
Myocardial Reperfusion Injury/metabolism*

Result Analysis
Print
Save
E-mail