1.Antibody threshold and demographic characteristics of low-titer group O whole blood donors in Jiangsu
Tao FENG ; Rui ZHU ; Wenjia HU ; Ling MA ; Hong LIN ; Xi YU ; Chun ZHOU ; Nizhen JIANG
Chinese Journal of Blood Transfusion 2025;38(9):1225-1229
Objective: To investigate the distribution of IgM anti-A/B titers among group O whole blood donors in Jiangsu, establish a low-titer threshold, and analyze the demographic characteristics of low-titer donors, so as to provide data for recruiting low-titer group O whole blood (LTOWB) donors. Methods: Plasma samples from 1 009 group O whole blood donors were tested for IgM anti-A and anti-B titers using the microplate technique. The distribution of antibody titers was analyzed to establish a low-titer threshold. The distribution trends of titers across different demographic groups were also analyzed. Results: The peak titer for anti-A, anti-B were 64 (31.5%), 4 (23.8%), respectively, The proportion of donors with both anti-A and anti-B titers below 64 was 97.3% (982/1 009). The mean anti-A titer was higher than anti-B titer. Anti-A titers were higher in female donors than in male donors (P<0.05). The anti-A titers differed significantly among different age groups (P<0.05). However, no significant difference in titers was observed based on the number of donations (P>0.05). Conclusion: A titer of 64 can be used as the reference threshold of LTOWB in Jiangsu. Male donors of appropriate age are more suitable than female donors for establishing an emergency panel of LTOWB mobile donors.
2.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
3.Expression and Clinical Significance of lncRNA NCK1-AS1 in Acute Myeloid Leukemia.
Chen CHENG ; Zi-Jun XU ; Pei-Hui XIA ; Xiang-Mei WEN ; Ji-Chun MA ; Yu GU ; Di YU ; Jun QIAN ; Jiang LIN
Journal of Experimental Hematology 2025;33(2):352-358
OBJECTIVE:
To detect and analyze the expression and clinical significance of long non-coding RNA tyrosine kinase non-catalytic region adaptor protein 1-antisense RNA1 (NCK1-AS1) in patients with acute myeloid leukemia (AML).
METHODS:
89 AML patients and 23 healthy controls were included from the People's Hospital Affiliated to Jiangsu University. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of NCK1-AS1 and NCK1 in bone marrow samples. The relationship between the expression of NCK1-AS1 and the clinical characteristics of patients were analyzed, as well as the correlation between NCK1-AS1 and NCK1.
RESULTS:
The expression level of NCK1-AS1 in all AML, non-M3 AML and cytogenetically normal AML (CN-AML) patients was significantly higher than that in the control group (P < 0.01, P < 0.05, P < 0.01, respectively). In non-M3 AML, patients with high NCK1-AS1 expression had a significantly lower hemoglobin level than those with low NCK1-AS1 expression (P =0.036), furthermore, NCK1-AS1 high patients had shorter overall survival than NCK1-AS1low patients (P =0.0378). Multivariate analysis showed that NCK1-AS1 expression was an independent adverse factor in patients with non-M3 AML ( HR =2.392, 95% CI :1.089-5.255, P =0.030). In addition, NCK1 expression was also significantly upregulated in all AML, non-M3 AML and CN-AML patients compared with controls (P < 0.01, P < 0.01, P < 0.001, respectively). There was a certain correlation between NCK1-AS1 and NCK1 expression (r =0.37, P =0.0058).
CONCLUSION
High expression of NCK1-AS1 in AML indicates poor prognosis of AML patients.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
RNA, Long Noncoding/genetics*
;
Oncogene Proteins/genetics*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Clinical Relevance
4.Deciphering Virulence Factors of Hyper-Virulent Pseudomonas aeruginosa Associated with Meningitis.
Li Ling XIE ; Shuo LIU ; Yu Fan WANG ; Ming Chun LI ; Zhen Hua HUANG ; Yue MA ; Qi Lin YU
Biomedical and Environmental Sciences 2025;38(7):856-866
OBJECTIVE:
Pseudomonas aeruginosa( P. aeruginosa) is a prevalent pathogenic bacterium involved in meningitis; however, the virulence factors contributing to this disease remain poorly understood.
METHODS:
The virulence of the P. aeruginosa A584, isolated from meningitis samples, was evaluated by constructing in vitro blood-brain barrier and in vivo systemic infection models. qPCR, whole-genome sequencing, and drug efflux assays of A584 were performed to analyze the virulence factors.
RESULTS:
Genomic sequencing showed that A584 formed a phylogenetic cluster with the reference strains NY7610, DDRC3, Pa58, and Pa124. Its genome includes abundant virulence factors, such as hemolysin, the Type IV secretion system, and pyoverdine. A584 is a multidrug-resistant strain, and its wide-spectrum resistance is associated with enhanced drug efflux. Moreover, this strain caused significantly more severe damage to the blood-brain barrier than the standard strain, PAO1. qPCR assays further revealed the downregulation of the blood-brain barrier-associated proteins Claudin-5 and Occludin by A584. During systemic infection, A584 exhibited a higher capacity of brain colonization than PAO1 (37.1 × 10 6 CFU/g brain versus 2.5 × 10 6 CFU/g brain), leading to higher levels of the pro-inflammatory factors IL-1β and TNF-α.
CONCLUSION
This study sheds light on the virulence factors of P. aeruginosa involved in meningitis.
Pseudomonas aeruginosa/genetics*
;
Virulence Factors/metabolism*
;
Animals
;
Virulence
;
Mice
;
Pseudomonas Infections/microbiology*
;
Blood-Brain Barrier/microbiology*
;
Humans
;
Female
5.Early predictors of refractory septic shock in neonates
Junjuan ZHONG ; Jing MO ; Jing ZHANG ; Yingyi LIN ; Dongju MA ; Yue WANG ; Chun SHUAI ; Xiuzhen YE
Chinese Journal of Neonatology 2024;39(3):157-161
Objective:To study the early predictors of refractory septic shock (RSS) in neonates.Methods:From July 2020 to December 2021, clinical data of neonates with septic shock admitted to the Neonatal Department of our hospital were retrospectively reviewed. According to the maximum septic shock score (SSS) during clinical course, the neonates were assigned into RSS group and non-RSS group. Perinatal data, laboratory results and hemodynamic parameters at diagnosis were compared between the two groups. Multiple logistic regression analysis was used to identify independent risk factors of RSS and septic shock-related death. Receiver operating characteristic (ROC) curve was constructed to evaluate the early predictors of poor prognosis.Results:A total of 130 neonates were enrolled, including 54 in RSS group and 76 in non-RSS group. Compared with the non-RSS group, the RSS group had significantly lower pH, base excess (BE), stroke volume index (SVI), cardiac output (CO) and cardiac index (CI).Meanwhile, the RSS group had significantly higher mean arterial pressure (MAP) to CI ratio (MAP/CI) and SSS [including bedside SSS (bSSS), computed SSS (cSSS) and modified version of cSSS (mcSSS)] (all P<0.05). Multiple logistic regression analysis showed that increased MAP/CI was an independent predictor of RSS. The cut-off value of MAP/CI was 11.6 [sensitivity 62%, specificity 87%, positive predictive value (PPV) 79% and negative predictive value (NPV) 77%], with an area under the curve (AUC) of 0.734. Increased mcSSS was an independent predictor of septic shock-related death. The cut-off value of mcSSS was 5.8 (sensitivity 83%, specificity 72%, PPV 21% and NPV 97%), with an AUC of 0.845. Conclusions:Increased MAP/CI (≥11.6) and mcSSS (≥5.8) may be early predictors of RSS and septic shock-related death in neonates.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail