1.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control
2.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
3.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
4.Quality evaluation of Changmaile Capsules(Ⅰ)
Kuan ZHANG ; Yu-Hang OU ; Chun-Yan LUO ; Yi-Ling WENG ; Yu-He XIE ; Jin-Xian YAN
Chinese Traditional Patent Medicine 2024;46(7):2134-2139
AIM To evaluate the quality of Changmaile Capsules(Ⅰ).METHODS The analysis was performed on a 35℃ thermostatic Thermo Scientific AccucoreTM XL C18 column(4.6 mm×250 mm,4 μm),with the mobile phase comprising of methanol-acetonitrile-0.5% phosphoric acid flowing at 1 mL/min in a gradient elution manner,and the detection wavelengths were set at 230,280 nm.The contents of gastrodin,danshensu,quercetin-3-O-β-D-glucose-7-O-β-D-gentiobioside,3′-hydroxypuerarin,puerarin,3′-methoxypuerarin,puerarin apioside,daidzin,rosmarinic acid,lithospermic acid,ononin,daidzein,salvianolic acid B,calycosin,paeoniflorin and isoquercitrin were determined,after which HPLC fingerprints were established,along with the calculation of similarities.RESULTS Sixteen constituents showed good linear relationships within their own ranges(r≥0.999 0),whose average recoveries were 87.4%-103.9% with the RSDs of 0.54%-3.10% .At 230 nm,the fingerprints of ten batches of samples demonstrated similarities of 0.954-0.999,which displayed obvious differences at 280 nm.3′-Hydroxypuerarin,puerarin,3′-methoxypuerarin,puerarin apioside,daidzin and daidzein were main differential constituents,paeoniflorin and isoquercitrin exhibited stable contents in various batches of samples.CONCLUSION This simple,accurate and reliable method can be used for the quality control of Changmaile Capsules(Ⅰ).
5.Protective effects of Shiwei Ruxiang Powder on renal injury in rats with gouty nephritis by regulating mitochondrial autophagy
Yan-Rong ZHU ; He-Bing XIE ; Chun-Xiang GONG ; Jie-Nan ZHAO ; Zhi-Bing YUAN
Chinese Traditional Patent Medicine 2024;46(9):2923-2930
AIM To investigate the renal protective effects of Shiwei Ruxiang Powder on gouty nephritis in rats based on mitophagy.METHODS Rats were randomly divided into the blank group,the model group,the low-dose,medium-dose,and high-dose Shiwei Ruxiang Powder groups(200,400,800 mg/kg)and allopurinol group(10 mg/kg).The rat model of gouty nephropathy was established by gavage of potassium oxyzinate(750 mg/kg)and uric acid(300 mg/kg).The rats had their levels of UA,SCr,BUN,XOD,SOD,MDA,ROS measured by automatic biochemical analyzer,ELISA and chemical fluorescence method;their renal pathological changes observed by HE staining;their apoptosis of renal tissue cells observed by TUNEL staining;and their mRNA and protein expressions of IL-1β,TNF-α,Bax,Bcl-2,caspase-3,caspase-9,PINK1,Parkin and LC3-Ⅱ detected by RT-qPCR and Western blot.RESULTS Compared with the model group,Shiwei Ruxiang Powder groups displayed dose-dependently decreased serum levels of UA,BUN and SCr,renal deposition of urate crystal and apoptosis(P<0.05);decreased renal levels of ROS and inflammatory factors IL-1β and TNF-α(P<0.05);and increased renal expressions of mitochondrial autophagy-related proteins PINK1,Parkin and LC3-Ⅱ(P<0.01).CONCLUSION Shiwei Ruxiang Powder may relieve gouty kidney injury in rats by reducing the uric acid level,the renal oxidative stress and inflammatory response,and activating mitophagy pathway as well.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail