1.Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective.
Song-Po LIU ; Yun-Fei LI ; Dan ZHANG ; Chun-Yang LI ; Xiao-Fang DAI ; Dong-Feng LAN ; Ji CAI ; He ZHOU ; Tao SONG ; Yan-Yu ZHAO ; Zhi-Xu HE ; Jun TAN ; Ji-Dong ZHANG
Asian Journal of Andrology 2025;27(1):20-29
Compounds isolated from Epimedium include the total flavonoids of Epimedium , icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium , its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Male
;
Epimedium/chemistry*
;
Humans
;
Genitalia, Male/drug effects*
;
Flavonoids/therapeutic use*
;
Animals
2.Association of redundant foreskin with sexual dysfunction: a cross-sectional study from 5700 participants.
Yuan-Qi ZHAO ; Nian LI ; Xiao-Hua JIANG ; Yang-Yang WAN ; Bo XU ; Xue-Chun HU ; Yi-Fu HOU ; Ji-Yan LI ; Shun BAI
Asian Journal of Andrology 2025;27(1):90-95
A previous study showed that the length of the foreskin plays a role in the risk of sexually transmitted infections and chronic prostatitis, which can lead to poor quality of sexual life. Here, the association between foreskin length and sexual dysfunction was evaluated. A total of 5700 participants were recruited from the andrology clinic at The First Affiliated Hospital of University of Science and Technology of China (Hefei, China). Clinical characteristics, including foreskin length, were collected, and sexual function was assessed by the International Index of Erectile Function-5 (IIEF-5) and Premature Ejaculation Diagnostic Tool (PEDT) questionnaires. Men with sexual dysfunction were more likely to have redundant foreskin than men without sexual dysfunction. Among the 2721 erectile dysfunction (ED) patients and 1064 premature ejaculation (PE) patients, 301 (11.1%) ED patients and 135 (12.7%) PE patients had redundant foreskin, respectively. Men in the PE group were more likely to have redundant foreskin than men in the non-PE group ( P = 0.004). Logistic regression analyses revealed that the presence of redundant foreskin was associated with increased odds of moderate/severe ED (adjusted odds ratio [aOR] = 1.31, adjusted P = 0.04), moderate PE (aOR = 1.38, adjusted P = 0.02), and probable PE (aOR = 1.37, adjusted P = 0.03) after adjusting for confounding variables. Our study revealed a positive correlation between the presence of redundant foreskin and the risk of sexual dysfunction, especially in PE patients. Assessment of the length of the foreskin during routine clinical diagnosis may provide information for patients with sexual dysfunction.
Humans
;
Male
;
Foreskin
;
Cross-Sectional Studies
;
Adult
;
Erectile Dysfunction/epidemiology*
;
Premature Ejaculation/epidemiology*
;
Middle Aged
;
China/epidemiology*
;
Surveys and Questionnaires
;
Sexual Dysfunction, Physiological/epidemiology*
;
Young Adult
3.Regulatory effect of miR-29b on OPN/TGF-β pathway and the change of this pathway in a high glucose environment in a renal cell co-culture system
Juan LIU ; Ming-Zheng YANG ; Xiao-Ying LI ; Ting-Ting JI ; Xiao-Yan XIONG ; Ying-Chun ZHU ; Shou-Jun BAI
Fudan University Journal of Medical Sciences 2024;51(6):921-930
Objective To establish a renal cell co-culture system to simulate the renal barrier system,and to test its responsiveness to different glucose concentrations,and to investigate the regulatory effect of miR-29b-3p on osteopontin(OPN)/transforming growth factor β(TGF-β)pathway and the changes of this pathway under high glucose condition.Methods The three-cell co-culture system consisting of human renal podocytes,human glomerular mesangial cells and human renal tubular epithelial cells was established to test the cell viability and glucose consumption value at glucose concentrations of 5,8,12 and 16 mmol/L.The content of TGF-β and OPN in cell supernatant was measured.The recombinant plasmid and siRNA of OPN were transfected,and the expressions of TGF-β and OPN were detected by Q-PCR and Western blot.Results The mRNA expressions of OPN,TGF-β and miR-29b were significantly increased at 12 mmol/L glucose conditions.Western blot results showed that the protein expression of OPN increased in high glucose conditions,while the protein expression of TGF-β did not change significantly.After adding miR-29b-3p activator,the mRNA levels of OPN and TGF-β in the cell supernatant were significantly increased.After adding miR-29b-3p inhibitor,the mRNA levels of OPN and TGF-β in the cell supernatant were significantly decreased.Western blot results showed that compared with 5 mmol/L glucose,the protein expressions of OPN and TGF-β were increased by miR-29b-3p activator,and the protein expressions of OPN and TGF-β were decreased by miR-29b-3p inhibitor.After transfection with OPN recombinant plasmid,the content of TGF-β in the cell supernatant was significantly increased,and the mRNA expressions of OPN and TGF-β in the cells were significantly increased.After transfection with OPN siRNA,the content of TGF-β in the cell supernatant was decreased,and the expression of OPN mRNA in the cells was significantly decreased,but the expression of TGF-β mRNA was not significantly increased.Conclusion The renal cell co-culture system can mimic the complex renal environment in vivo.When induced by high glucose,cell proliferation is inhibited,glucose consumption is increased,and the content of TGF-β in the cell supernatant is increased,and miR-29b-3p has a regulatory effect on OPN/TGF-β signaling pathway in the co-culture system.
4.Extracorporeal membrane oxygenation for post-aortic surgery: A retrospective study in a single center
Shujie YAN ; Chun ZHOU ; Gang LIU ; Sizhe GAO ; Jiachen QI ; Cuntao YU ; Zujun CHEN ; Bingyang JI ; Song LOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(05):751-756
Objective To describe the outcomes of extracorporeal membrane oxygenation (ECMO) for patients after aortic surgery and to summarize the experience. Methods The clinical data of patients who received ECMO support after aortic surgery in Fuwai Hospital from 2009 to 2020 were retrospectively analyzed. The patients who received an aortic dissection surgery were allocated into a dissection group, and the other patients were allocated into a non-dissection group. The in-hospital and follow-up survival rates were compared between the two groups, and the causes of death were analyzed. Results A total of 22 patients were enrolled, including 17 patients in the dissection group [13 males and 4 females, with a median age of 54 (46, 61) years] and 5 patients in the non-dissection group [3 males and 2 females, with a median age of 51 (41, 65) years]. There was no statistical difference in the age and gender between the two groups (P>0.05). The in-hospital survival rate (11.8% vs. 100.0%, P=0.001) and follow-up survival rate (11.8% vs. 80.0%, P=0.009) of the patients in the dissection group were significantly lower than those in the non-dissection group. The causes of death in the dissection group included massive bleeding and disseminated intravascular coagulation (3 patients), ventricular thrombosis (1 patient), irreversible brain injury (2 patients), visceral malperfusion syndrome (4 patients) and irreversible heart failure (5 patients). Conclusion ECMO after aortic dissection surgery is associated with high mortality, which is related to the pathological features of aortic dissection and severely disrupted coagulation system after the surgery. For these patients, strict indication selection and optimal management strategy are important.
5.Silencing essential meiotic endonuclease 1 inhibits the proliferation of liver cancer cells:A study of related mechanisms
Chun CHEN ; Kexin WANG ; Mengwen HE ; Le LI ; Chunyan WANG ; Yan LIU ; Dong JI
Journal of Clinical Hepatology 2024;40(5):982-988
Objective To investigate the expression of essential meiotic endonuclease 1(EME1)in liver cancer tissue and its effect on the biological behavior of hepatoma cells.Methods The TCGA database was used to identify the differentially expressed genes between liver cancer tissue and paracancerous tissue.Immunohistochemistry and Western Blot were used to measure the expression abundance of EME1 in liver cancer tissue.A lentivirus was constructed by short hairpin RNA,and BEL-7404 cells were transfected with the lentivirus to interfere with the expression of the EME1 gene;the cells were divided into silencing group(shEME1 group)and control group(shCtrl group).Quantitative real-time PCR and Western Blot were used to measure the mRNA and protein expression levels of EME1;Celigo Image Cytometer and MTT assay were used to measure cell proliferation rate;flow cytometry was used to observe cell cycle;Caspase 3/7 activity was used to measure cell apoptosis.The independent-samples t-test was used for comparison between two groups.Results TCGA results showed that the mRNA expression level of EME1 in liver cancer tissue was 18.9 times that in paracancerous tissue(t=5.00,P<0.001),and the protein expression level of EME1 in liver cancer tissue was 7.0 times(based on immunohistochemistry:8.4±2.6 vs 1.2±0.4,t=7.55,P<0.001)or 2.5 times(based on Western Blot:249.0%±35.5%vs 100.0%±77.8%,t=3.02,P<0.05)that in paracancerous tissue.After lentivirus infection,compared with the shCtrl group,the shEME1 group had an mRNA expression level of EME1 reduced by 29.9%(29.9%±0.9%vs 100.0%±3.6%,t=32.82,P<0.001),a protein expression level of EME1 reduced by 35.7%(35.7%±14.9%vs 100.0%±28.9%,t=3.42,P<0.05),and a level of cell counting reduced by 45.1%(4 053±167 vs 8 988±477,t=16.91,P<0.001),as well as a level of cell activity reduced to 66.9%(0.518±0.046 vs 0.774±0.022,t=8.74,P<0.001)and a level of colony forming ability reduced to 29.0%(75±6 vs 260±9,t=28.92,P<0.001).Compared with the shCtrl group,the shEME1 group had a significant increase in the proportion of cells in G1 phase(49.9%vs 44.0%,t=8.96,P<0.001)and significant reductions in the proportion of cells in G2/M phase(15.9%vs 17.9%,t=9.13,P<0.001)and S phase(34.2%vs 38.1%,t=6.91,P<0.001),while Caspase 3/7 activity was enhanced by 1.5 times(145.8%±5.9%vs 100.0%±2.3%,t=12.50,P<0.001).Conclusion EME1 is highly expressed in liver cancer tissue,and silencing the EME1 gene can inhibit the proliferation of hepatoma cells and promote cell apoptosis.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail