1.Explainable machine learning model for predicting septic shock in critically sepsis patients based on coagulation indexes: A multicenter cohort study.
Qing-Bo ZENG ; En-Lan PENG ; Ye ZHOU ; Qing-Wei LIN ; Lin-Cui ZHONG ; Long-Ping HE ; Nian-Qing ZHANG ; Jing-Chun SONG
Chinese Journal of Traumatology 2025;28(6):404-411
PURPOSE:
Septic shock is associated with high mortality and poor outcomes among sepsis patients with coagulopathy. Although traditional statistical methods or machine learning (ML) algorithms have been proposed to predict septic shock, these potential approaches have never been systematically compared. The present work aimed to develop and compare models to predict septic shock among patients with sepsis.
METHODS:
It is a retrospective cohort study based on 484 patients with sepsis who were admitted to our intensive care units between May 2018 and November 2022. Patients from the 908th Hospital of Chinese PLA Logistical Support Force and Nanchang Hongdu Hospital of Traditional Chinese Medicine were respectively allocated to training (n=311) and validation (n=173) sets. All clinical and laboratory data of sepsis patients characterized by comprehensive coagulation indexes were collected. We developed 5 models based on ML algorithms and 1 model based on a traditional statistical method to predict septic shock in the training cohort. The performance of all models was assessed using the area under the receiver operating characteristic curve and calibration plots. Decision curve analysis was used to evaluate the net benefit of the models. The validation set was applied to verify the predictive accuracy of the models. This study also used Shapley additive explanations method to assess variable importance and explain the prediction made by a ML algorithm.
RESULTS:
Among all patients, 37.2% experienced septic shock. The characteristic curves of the 6 models ranged from 0.833 to 0.962 and 0.630 to 0.744 in the training and validation sets, respectively. The model with the best prediction performance was based on the support vector machine (SVM) algorithm, which was constructed by age, tissue plasminogen activator-inhibitor complex, prothrombin time, international normalized ratio, white blood cells, and platelet counts. The SVM model showed good calibration and discrimination and a greater net benefit in decision curve analysis.
CONCLUSION
The SVM algorithm may be superior to other ML and traditional statistical algorithms for predicting septic shock. Physicians can better understand the reliability of the predictive model by Shapley additive explanations value analysis.
Humans
;
Shock, Septic/blood*
;
Machine Learning
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Aged
;
Sepsis/complications*
;
ROC Curve
;
Cohort Studies
;
Adult
;
Intensive Care Units
;
Algorithms
;
Blood Coagulation
;
Critical Illness
2.Bioequivalence study of ezetimibe tablets in Chinese healthy subjects
Pei-Yue ZHAO ; Tian-Cai ZHANG ; Yu-Ning ZHANG ; Ya-Fei LI ; Shou-Ren ZHAO ; Jian-Chang HE ; Li-Chun DONG ; Min SUN ; Yan-Jun HU ; Jing LAN ; Wen-Zhong LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2378-2382
Objective To evaluate the bioequivalence and safety of ezetimibe tablets in healthy Chinese subjects.Methods The study was designed as a single-center,randomized,open-label,two-period,two-way crossover,single-dose trail.Subjects who met the enrollment criteria were randomized into fasting administration group and postprandial administration group and received a single oral dose of 10 mg of the subject presparation of ezetimibe tablets or the reference presparation per cycle.The blood concentrations of ezetimibe and ezetimibe-glucuronide conjugate were measured by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS),and the bioequivalence of the 2 preparations was evaluated using the WinNonlin 7.0 software.Pharmacokinetic parameters were calculated to evaluate the bioequivalence of the 2 preparations.The occurrence of all adverse events was also recorded to evaluate the safety.Results The main pharmacokinetic parameters of total ezetimibe in the plasma of the test and the reference after a single fasted administration:Cmax were(118.79±35.30)and(180.79±51.78)nmol·mL-1;tmax were 1.40 and 1.04 h;t1/2 were(15.33±5.57)and(17.38±7.24)h;AUC0-t were(1 523.90±371.21)and(1 690.99±553.40)nmol·mL-1·h;AUC0-∞ were(1 608.70±441.28),(1 807.15±630.00)nmol·mL-1·h.The main pharmacokinetic parameters of total ezetimibe in plasma of test and reference after a single meal:Cmax were(269.18±82.94)and(273.93±87.78)nmol·mL-1;Tmax were 1.15 and 1.08 h;t1/2 were(22.53±16.33)and(16.02±5.84)h;AUC0_twere(1 463.37±366.03),(1 263.96±271.01)nmol·mL-1·h;AUC0-∞ were(1 639.01±466.53),(1 349.97±281.39)nmol·mL-1·h.The main pharmacokinetic parameters Cmax,AUC0-tand AUC0-∞ of the two preparations were analyzed by variance analysis after logarithmic transformation.In the fasting administration group,the 90%CI of the log-transformed geometric mean ratios were within the bioequivalent range for the remaining parameters in the fasting dosing group,except for the Cmax of ezetimibe and total ezetimibe,which were below the lower bioequivalent range.The Cmax of ezetimibe,ezetimibe-glucuronide,and total ezetimibe in the postprandial dosing group was within the equivalence range,and the 90%CI of the remaining parameters were not within the equivalence range for bioequivalence.Conclusion This test can not determine whether the test preparation and the reference preparation of ezetimibe tablets have bioequivalence,and further clinical trials are needed to verify it.
3.Clinical phenotype and genetic features of 16p11.2 microdeletion-related epilepsy in children.
Chong-Yuan LAI ; Rui-Hua CHEN ; Chun-Lan ZHONG ; Ming-Ming JI ; Bing-Fei LI
Chinese Journal of Contemporary Pediatrics 2022;24(5):585-590
OBJECTIVES:
To study the clinical phenotype and genetic features of 16p11.2 microdeletion-related epilepsy in children.
METHODS:
The medical data of 200 children with epilepsy who underwent a genetic analysis of epilepsy by the whole exon sequencing technology were collected retrospectively, of whom 9 children with epilepsy had 16p11.2 microdeletion. The clinical phenotype and genetic features of the 9 children with 16p11.2 microdeletion were analyzed.
RESULTS:
The detection rate of 16p11.2 microdeletion was 4.5% (9/200). The 9 children with 16p11.2 microdeletion were 3-10 months old. They experienced focal motor seizures with consciousness disturbance, and some of the seizures developed into generalized tonic-clonic seizures. The interictal electroencephalogram showed focal or multifocal epileptiform discharge, and all 9 children responded well to antiepileptic drugs. The 9 children had a 16p11.2 deletion fragment size of 398-906 kb, and the number of deleted genes was 23-33 which were all pathogenic mutations. The mutation was of maternal origin in 2 children, of paternal origin in 1 child, and de novo in the other children.
CONCLUSIONS
16p11.2 microdeletion can be detected in some children with epilepsy. Most of the 16p11.2 microdeletion is de novo mutation and large gene fragment deletion. The onset of 16p11.2 microdeletion-related epilepsy in children is mostly within 1 year of life, and the epilepsy is drug-responsive.
Anticonvulsants
;
Epilepsy/genetics*
;
Humans
;
Phenotype
;
Retrospective Studies
;
Seizures/genetics*
4.Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques.
Chun-Chun GAO ; Man LI ; Wei DENG ; Chun-Hui MA ; Yu-Sheng CHEN ; Yong-Qiao SUN ; Tingfu DU ; Qian-Lan LIU ; Wen-Jie LI ; Bing ZHANG ; Lihong SUN ; Si-Meng LIU ; Fengli LI ; Feifei QI ; Yajin QU ; Xinyang GE ; Jiangning LIU ; Peng WANG ; Yamei NIU ; Zhiyong LIANG ; Yong-Liang ZHAO ; Bo HUANG ; Xiao-Zhong PENG ; Ying YANG ; Chuan QIN ; Wei-Min TONG ; Yun-Gui YANG
Protein & Cell 2022;13(12):920-939
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Animals
;
COVID-19/genetics*
;
Macaca mulatta
;
SARS-CoV-2/genetics*
;
Transcriptome
5.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases
7.Application effects of feedforward control theory in the rollover bed treatment of mass patients with burn-explosion combined injury.
Hua Qing CHEN ; Xiu Qin FENG ; Cai Juan XU ; Yu Ping ZHANG ; Fei ZENG ; Zu Ai ZHONG ; Yi Lan XIA ; Chun Mao HAN
Chinese Journal of Burns 2022;38(4):373-377
Objective: To explore the application effects of feedforward control theory in the rollover bed treatment of mass patients with burn-explosion combined injury. Methods: A retrospective observational research was conducted. From June 13 to 14, 2020, 15 patients with severe burn-explosion combined injury caused by liquefied natural gas tank car explosion and conforming to the inclusion criteria were admitted to the Second Affiliated Hospital of Zhejiang University School of Medicine. There were 13 males and 2 females, aged 33-92 (66±17) years. All the patients were treated with rollover bed from 48 h post admission, and the feedforward control theory was introduced, including establishing a special feedforward control management team for rollover bed, clarifying the duties of the medical staff in the rollover bed treatment of patients, implementing the cooperation strategy of multidisciplinary physician, training and examining for 80 nurses in the temporarily organized nurse team in the form of "rollover bed workshop", and formulating the checklist and valuation list of rollover bed treatment for continuous quality control. The frequency and the total number of turning over, and successful rate of one-time posture change with the rollover bed of patients within 30 days of admission were recorded, the occurrences of adverse events caused by improper operation for the rollover bed during the treatment were observed, including respiratory and cardiac arrests, treatment interruption, unplanned extubation, bed falling, and skin graft displacement. The lowest levels of arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2), the number of patients with oxygenation index>300 mmHg (1 mmHg=0.133 kPa), and the occurrence of acute respiratory distress syndrome (ARDS) of patients within 2 days of admission and on the 30th day of admission were recorded. Results: Within 30 days of admission, the patients were turned over with the rollover bed for 2 to 6 times each day, with a total of 1 320 turning over operations, the successful rate of one-time posture change reached 99.9% (1 319/1 320), and no adverse event occurred. Within 2 days of admission, the lowest levels of PaO2 and PaCO2 of the patients were (100±19) and (42±4) mmHg, respectively, and the number of patients with mild, moderate, and severe ARDS were 10, 2, and 3, respectively, and none of the patients had oxygenation index>300 mmHg. On the 30th day of admission, the lowest levels of PaO2 and PaCO2 of the patients were (135±28) and (37±8) mmHg, respectively, 3 patients developed moderate ARDS, 1 patient developed severe ARDS, and 11 patients had oxygenation index>300 mmHg. Conclusions: The introduction of feedforward control theory in the treatment of rollover bed of mass patients with burn-explosion combined injury can ensure safe and successful completion of turning over with the rollover bed, promote the repair of burn wound, and improve respiratory function, and therefore improve the treatment quality of patients.
Blood Gas Analysis
;
Burns/therapy*
;
Explosions
;
Female
;
Humans
;
Male
;
Respiratory Distress Syndrome
;
Retrospective Studies
8.Efficacy and safety of decitabine combined with low-dose cytarabine, aclarubicin, and granulocyte colony-stimulating factor compared with standard therapy in acute myeloid leukemia patients with TP53 mutation.
Si-Si CHEN ; Qian SUN ; Lan CAO ; Wen-Zhong WU ; Yue XIE ; Chun QIAO ; Jian-Yong LI ; Si-Xuan QIAN ; Ming HONG
Chinese Medical Journal 2020;134(12):1477-1479
9.Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes.
Ya-Na LV ; Chun-Yong YANG ; Lin-Chun SHI ; Zhong-Lian ZHANG ; An-Shun XU ; Li-Xia ZHANG ; Xue-Lan LI ; Hai-Tao LI
Chinese Journal of Natural Medicines (English Ed.) 2020;18(8):594-605
To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA-trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified. The PCR amplification for ITS2 and psbA-trnH sequences was 100%. The sequencing success rates for ITS2 and psbA-trnH sequences were 81% and 61%, respectively. Additional data involved 53 sequences of the ITS2 region and 38 sequences of the psbA-trnH region were downloaded from GenBank. Moreover, the analysis showed that the inter-specific divergence of Apocynaceae species was greater than its intra-specific variations. The results indicated that, using the BLAST1 method, ITS2 showed a high identification efficiency of 97% and 100% of the samples at the species and genus levels, respectively, via BLAST1, and psbA-trnH successfully identified 95% and 100% of the samples at the species and genus levels, respectively. The barcode combination of ITS2/psbA-trnH successfully identified 98% and 100% of samples at the species and genus levels, respectively. Subsequently, the neighbor joining tree method also showed that barcode ITS2 and psbA-trnH could distinguish among the species within the Apocynaceae family. ITS2 is a core barcode and psbA-trnH is a supplementary barcode for identifying species in the Apocynaceae family. These results will help to improve DNA barcoding reference databases for herbal drugs and other herbal raw materials.
10.Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study.
Li-Li REN ; Ye-Ming WANG ; Zhi-Qiang WU ; Zi-Chun XIANG ; Li GUO ; Teng XU ; Yong-Zhong JIANG ; Yan XIONG ; Yong-Jun LI ; Xing-Wang LI ; Hui LI ; Guo-Hui FAN ; Xiao-Ying GU ; Yan XIAO ; Hong GAO ; Jiu-Yang XU ; Fan YANG ; Xin-Ming WANG ; Chao WU ; Lan CHEN ; Yi-Wei LIU ; Bo LIU ; Jian YANG ; Xiao-Rui WANG ; Jie DONG ; Li LI ; Chao-Lin HUANG ; Jian-Ping ZHAO ; Yi HU ; Zhen-Shun CHENG ; Lin-Lin LIU ; Zhao-Hui QIAN ; Chuan QIN ; Qi JIN ; Bin CAO ; Jian-Wei WANG
Chinese Medical Journal 2020;133(9):1015-1024
BACKGROUND:
Human infections with zoonotic coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, have raised great public health concern globally. Here, we report a novel bat-origin CoV causing severe and fatal pneumonia in humans.
METHODS:
We collected clinical data and bronchoalveolar lavage (BAL) specimens from five patients with severe pneumonia from Wuhan Jinyintan Hospital, Hubei province, China. Nucleic acids of the BAL were extracted and subjected to next-generation sequencing. Virus isolation was carried out, and maximum-likelihood phylogenetic trees were constructed.
RESULTS:
Five patients hospitalized from December 18 to December 29, 2019 presented with fever, cough, and dyspnea accompanied by complications of acute respiratory distress syndrome. Chest radiography revealed diffuse opacities and consolidation. One of these patients died. Sequence results revealed the presence of a previously unknown β-CoV strain in all five patients, with 99.8% to 99.9% nucleotide identities among the isolates. These isolates showed 79.0% nucleotide identity with the sequence of SARS-CoV (GenBank NC_004718) and 51.8% identity with the sequence of MERS-CoV (GenBank NC_019843). The virus is phylogenetically closest to a bat SARS-like CoV (SL-ZC45, GenBank MG772933) with 87.6% to 87.7% nucleotide identity, but is in a separate clade. Moreover, these viruses have a single intact open reading frame gene 8, as a further indicator of bat-origin CoVs. However, the amino acid sequence of the tentative receptor-binding domain resembles that of SARS-CoV, indicating that these viruses might use the same receptor.
CONCLUSION
A novel bat-borne CoV was identified that is associated with severe and fatal respiratory disease in humans.
Adult
;
Aged
;
Betacoronavirus
;
genetics
;
isolation & purification
;
Coronavirus Infections
;
diagnostic imaging
;
therapy
;
virology
;
Female
;
Humans
;
Male
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
diagnostic imaging
;
therapy
;
virology
;
Tomography, X-Ray
;
Treatment Outcome

Result Analysis
Print
Save
E-mail