1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.The construction of integrated urban medical groups in China:Typical models,key issues and path optimization
Hua-Wei TAN ; Xin-Yi PENG ; Hui YAO ; Xue-Yu ZHANG ; Le-Ming ZHOU ; Ying-Chun CHEN
Chinese Journal of Health Policy 2024;17(1):9-16
This paper outlines the common aspects of constructing integrated urban medical groups,focusing on governance,organizational restructuring,operational modes,and mechanism synergy.It then delves into the challenges in China's group construction,highlighting issues with power-responsibility alignment,capacity evolution,incentive alignment,and performance evaluation.Finally,the paper suggests strategies to enhance China's compact urban medical groups,focusing on governance reform,capacity building,benefit integration,and performance evaluation.
7.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
OBJECTIVE:
To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
METHODS:
B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
RESULTS:
In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
CONCLUSIONS
Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Mice
;
Animals
;
Alocasia/metabolism*
;
MAP Kinase Signaling System
;
Caspase 3/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
8.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of
9.Research progress of natural product evodiamine-based antitumor drug design strategies
Zhe-wei XIA ; Yu-hang SUN ; Tian-le HUANG ; Hua SUN ; Yu-ping CHEN ; Chun-quan SHENG ; Shan-chao WU
Acta Pharmaceutica Sinica 2024;59(3):532-542
Natural products are important sources for the discovery of anti-tumor drugs. Evodiamine is the main alkaloid component of the traditional Chinese herb Wu-Chu-Yu, and it has weak antitumor activity. In recent years, a number of highly active antitumor candidates have been discovered with a significant progress. This article reviews the research progress of evodiamine-based antitumor drug design strategies, in order to provide reference for the development of new drugs with natural products as leads.
10.Drug-free targeted thrombolytic strategy based on gold nanoparticles-loaded human serum albumin fusion protein delivery system
Jin-jin LU ; Chun LIU ; Si-rong SUN ; Jing-hua CHEN ; Min GAO
Acta Pharmaceutica Sinica 2024;59(2):455-463
Thrombus is a major factor leading to cardiovascular diseases such as myocardial infarction and stroke. Although fibrinolytic anti-thrombotic drugs have been widely used in clinical practice, they are still limited by narrow therapeutic windows, short half-lives, susceptibility to inactivation, and abnormal bleeding caused by non-targeting. Therefore, it is crucial to effectively deliver thrombolytic agents to the site of thrombus with minimal adverse effects. Based on the long blood circulation and excellent drug-loading properties of human serum albumin (HSA), we employed genetic engineering techniques to insert a functional peptide (P-selectin binding peptide, PBP) which can target the thrombus site to the

Result Analysis
Print
Save
E-mail