1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Application of shape memory alloys in assistive devices and rehabilitation equipment
Xin TAN ; Hongyue ZHANG ; Yuchan ZHAO ; Chun QIN ; Shuogui XU
Chinese Journal of Tissue Engineering Research 2025;29(10):2113-2123
BACKGROUND:With the continuous progress of science and technology,the introduction of new technologies and methods will bring more possibilities and new breakthroughs for the application of shape memory alloys in the fields of assistive and rehabilitation. OBJECTIVE:To review the application status of shape memory alloys in assistive and rehabilitation equipment,discuss their main methods,techniques and results,summarize and put forward suggestions,hoping that shape memory alloys can be continuously optimized and bring more new changes for the development of assistive and rehabilitation equipment. METHODS:WanFang,PubMed,and Web of Science databases were searched by computer."Shape memory alloys,application progress,orthodontics,orthopedic,prosthesis,rehabilitation,properties,implantation,mechanical properties,nickel-titanium memory alloys,actuation"were used as Chinese search terms."Shape memory alloys,application,orthodontics,orthopedic,prosthetics,rehabilitation,properties,implant,drive,progress,prostheses"were used as English search terms.Finally,91 articles were included for review. RESULTS AND CONCLUSION:(1)Shape memory alloy has the characteristics of corrosion resistance,wear resistance,biocompatibility,fatigue resistance,kink resistance and other properties.Compared with other traditional materials(stainless steel,titanium alloy,cobalt-chromium alloy,etc.),shape memory alloy has lower elastic modulus and no biological toxicity,which is suitable for long-term implantation as an implant prosthesis.Due to its shape memory effect and excellent mechanical properties,it is mainly used as a driving element or as a bridge connecting the device and the human body in artificial limbs,orthoses and rehabilitation equipment.(2)The use of shape memory alloy drive elements can reduce the weight of the device,eliminate noise,easy to operate,easy to carry,better assist joint movement;compared with the use of pneumatic,hydraulic,and electrical drive methods of the device,it has obvious advantages.(3)In addition,shape memory alloy can produce permanent and stable stress during deformation.Compared with stainless steel,titanium alloy and aluminum alloy,shape memory alloy has a higher material recovery rate and does not need to be replaced and adjusted frequently,so it is more practical in the correction of deformity.(4)At present,shape memory alloy is most commonly used in orthosis,and the best clinical application effect is in stapes prosthesis.However,due to the limitations of technology and cost,shape memory alloys are rarely used in artificial limbs and rehabilitation equipment,and there is a lack of large sample size studies on the application effect.(5)Although shape memory alloys have been developed in the field of auxiliary and rehabilitation,there are still many problems:it is difficult to accurately control the shape memory alloys;the cooling speed of shape memory alloy is slow;the deformation speed of shape memory alloy cannot be controlled;there is a lack of comparative research and expert consensus on shape memory alloys with different properties;shape memory alloys are costly and expensive.(6)In the future,attention should be paid to the development of new shape memory alloys,increase comparative research,and use new technologies and methods(such as 4D printing)to solve the existing problems,so as to develop high-performance assistive devices and rehabilitation equipment.
3.Advances in oral distant targeted nanodelivery systems
Min SUN ; Chuan-sheng HUANG ; Li-ping WANG ; Xu-li RUAN ; Yun-li ZHAO ; Xin-chun WANG
Acta Pharmaceutica Sinica 2025;60(1):72-81
Due to patient compliance and convenience, oral medication is likely the most common and acceptable method of drug administration. However, traditional dosage forms such as tablets or capsules may lead to low drug bioavailability and poor therapeutic efficiency. Therefore, with advancements in material science and micro/nano manufacturing technology, various carriers have been developed to enhance drug absorption in the gastrointestinal tract. In this context, we initially discuss the key biological factors that hinder drug transport and absorption (including anatomical, physical, and biological factors). Building on this foundation, recent progress in both conventional and innovative oral drug delivery routes aimed at improving drug bioavailability and targeting is reviewed. Finally, we explore future prospects for oral drug delivery systems as well as potential challenges in clinical translation.
4.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
5.Effect of Macelignan on the autophagy and apoptosis of hippocampal neuron HT22 cells induced by oxidative stress
Sha LI ; Xin-Ge CHU ; Xin-Ru QIU ; Li LI ; Guang-Hai YAN ; Chun-Ai CUI
The Chinese Journal of Clinical Pharmacology 2024;40(13):1865-1868
Objective To explore the regulatory mechanism of Macelignan on oxidative stress-mediated neuronal injury in autophagy and apoptosis.Methods Murine hippocampal neuronal HT22 cells were treated with 2.5 mmol·L-1 glutamic acid(Glu)to establish an oxidative stress cell model.The cells were divided into normal group(normal cultured cells),model group(2.5 mmol·L-1 Glu)and experimental-L,-M,-H groups(2.5,5,10 μmol·L-1Macelignan treatment),inhibitor group(2.5 mmol·L-1 Glu+10 μmol·L-1 Macelignan+10 μmol·L-1 LY294002).Aoptosis rate was detected by flow cytometry;the protein expression level of autophagy-related protein LC3B(LC3B),anti-SQSTM1/p62(p62),p21,B-cell lymphoma-2(Bcl-2)and Bcl-2 associated X protein(Bax)was detected by Western blot.Results The apoptosis rates in the normal group,model group and experimental-L,-M,-H groups were(4.58±1.25)%,(8.75±0.55)%,(6.30±1.71)%,(5.97±2.27)%and(5.49±1.71)%.The difference between model group and normal group was statistically significant(P<0.01).The difference between experimental-L,-M,-H groups and model group was statistically significant(all P<0.01).The levels of LC3B in normal group,model group,experimental-L,experimental-M,experimental-H groups and inhibitor group were 0.28±0.02,0.74±0.02,1.02±0.04,0.70±0.03,0.26±0.02 and 0.21±0.01;p62 levels were 0.49±0.08,0.33±0.03,0.50±0.07,0.59±0.01,0.64±0.13 and 0.65±0.06;p21 levels were 0.87±0.02,1.18±0.03,0.98±0.03,0.88±0.03,0.72±0.06 and 0.81±0.02;Bcl-2/Bax levels were 1.74±0.23,1.11±0.10,1.38±0.05,1.66±0.26,1.58±0.29 and 1.53±0.09,respectively.The differences between model group and normal group,between model group and experimental-H group,between model group and inhibitor group,were also statistically significant(all P<0.01).Conclusion Macelignan can reduce the damage of hippocampal neurons induced by glutamate acid by regulating the process of autophagy and apoptosis,and has obvious neuroprotective effect.
6.The construction of integrated urban medical groups in China:Typical models,key issues and path optimization
Hua-Wei TAN ; Xin-Yi PENG ; Hui YAO ; Xue-Yu ZHANG ; Le-Ming ZHOU ; Ying-Chun CHEN
Chinese Journal of Health Policy 2024;17(1):9-16
This paper outlines the common aspects of constructing integrated urban medical groups,focusing on governance,organizational restructuring,operational modes,and mechanism synergy.It then delves into the challenges in China's group construction,highlighting issues with power-responsibility alignment,capacity evolution,incentive alignment,and performance evaluation.Finally,the paper suggests strategies to enhance China's compact urban medical groups,focusing on governance reform,capacity building,benefit integration,and performance evaluation.
7.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
8.Application and Prospects of Polygenic Risk Score (PRS) in Genetic Disease Research: a Review of Data Analysis Methods
Shu-Xin HE ; Chang-Shun YU ; Xiao-Dong JIA ; Jian-Chun CHEN ; Ke-Qiang YAN
Progress in Biochemistry and Biophysics 2024;51(8):1797-1808
Lower-cost genotyping technology has promoted the generation of large genetic datasets with the evolving next-generation sequencing technology. The emergence of genome-wide association studies (GWAS) has facilitated researchers’ understanding of common complex diseases. GWAS refers to finding the sequence variations present in the human genome and screening out disease-related single nucleotide polymorphisms (SNPs). These SNPs are considered as the basis for assessing the stability of complex diseases. However, a single variation is not sufficient to assess an individual’s risk of disease. Polygenic risk score (PRS) is an emerging genetic data analysis method for quantitatively estimating an individual’s genetic risk for complex diseases by comprehensively considering multiple genetic variation sites. A single-value estimate of an individual’s genetic risk for a certain phenotype can be calculated as the cumulative impact of multiple genetic variants by building a PRS model. The finally expected risk score is weighted by the strength and direction of association of each SNP with the phenotype based on the number of alleles carried by each SNP. With the continuous development of various PRS calculation methods and the constant accumulation of genomic data, PRS has received widespread attention in the field of genetics. So far, quite a few studies at home and abroad have shown that PRS is valuable in risk prediction of different types of human traits or complex diseases, and its effectiveness has been further verified in clinical applications. At present, many studies have established PRS models based on GWAS summary statistics to quantify the genetic risk of susceptibility loci and clinical characteristics on diseases such as lung cancer, breast cancer, coronary heart disease, diabetes and Alzheimer’s disease. The disease-susceptible populations can be recognized through comparing the relative risk and absolute risk of the disease in different risk groups according to the population risk stratification results. Additionally, individual-level genotype data and omics data can also be used as data sources for PRS analysis research, especially the latter can dynamically reflect the short-term or long-term effects of environmental factors on human gene expression, and has potential application value in building early warning models to assess health risks. Since the calculation of PRS involves a large amount of genomic data analysis, there are big differences in the methods for data selection, model building and validation. Different PRS construction methods and software have different performances in disease risk prediction, and even the performance of same algorithm varies across diseases. It is worth noting that the PRS model often needs to be re-evaluated and verified for different groups of people, because PRS is affected by race and region. This review combines currently published PRS-related research and algorithms to describe the basic principles of PRS, compares their construction and verification methods, and discusses their applications and prospects. As a powerful genetic risk assessment tool, PRS has great potential in analyzing the genetic code of complex diseases and achieving precise diagnosis and personalized treatment.
9.Research advances of pentacyclic triterpenoid natural products
Wen-xin DING ; Bai-lin DU ; Jiao LI ; Chun-lin ZHUANG
Acta Pharmaceutica Sinica 2024;59(5):1163-1175
Pentacyclic triterpenoids are a class of widespread natural compounds containing six isoprene structures with a wide range of pharmacological activities, including antibacterial, anti-inflammatory, antiviral, antitumor, immune regulation,
10.Schisandrin A ameliorates DSS-induced acute ulcerative colitis in mice via regulating the FXR signaling pathway
Jia-rui JIANG ; Kua DONG ; Yu-chun JIN ; Xin-ru YANG ; Yi-xuan LUO ; Shu-yang XU ; Xun-jiang WANG ; Li-hua GU ; Yan-hong SHI ; Li YANG ; Zheng-tao WANG ; Xu WANG ; Li-li DING
Acta Pharmaceutica Sinica 2024;59(5):1261-1270
Inflammatory bowel disease (IBD) is characterized by chronic relapsing intestinal inflammation and encompasses ulcerative colitis (UC) and Crohn's disease (CD). IBD has emerged as a global healthcare problem. Clinically efficacious therapeutic agents are deficient. This study concentrates on models of ulcerative colitis with the objective of discovering novel therapeutic strategies. Previous investigations have established that schisandrin A demonstrates anti-inflammatory effects

Result Analysis
Print
Save
E-mail