1.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
2.Effects and mechanisms of Yuxuebi Tablets combined with ibuprofen in treating chronic musculoskeletal pain through "integrated regulation of inflammation and pain-related oxylipins".
Ao-Qing HUANG ; Wen-Li WANG ; Guo-Xin ZHANG ; Ying LIU ; Na LIN ; Chun-Yan ZHU
China Journal of Chinese Materia Medica 2025;50(13):3763-3777
This study adopted a three-dimensional "effect-dose-mechanism" evaluation system to screen the optimal regimen of Yuxuebi Tablets(YXB) combined with ibuprofen(IBU) for chronic musculoskeletal pain(CMP) intervention and elucidate its pharmacological mechanism, so as to provide a scientific basis for the clinical application of the regimen. The experiments were conducted using 8-week-old ICR mice, which were randomly divided into sham operation(sham) group, model(CFA) group, IBU group, YXB group, stasis paralysis tablets combined with ibuprofen low-dose group(IBU-L-YXB), stasis paralysis combined with ibuprofen high-dose group(IBU-H-YXB), stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen discontinuation on the 10th day of administration(IBU-10-YXB), and stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen halving on the 10th day of administration(IBU-1/2-YXB) group. An animal model was established using the CFA plantar injection method. On D0(the second day post-modeling), the success of model establishment was assessed, followed by continuous drug administration for 18 consecutive days from D1 to D18. During this period, mechanical pain threshold was measured by the Von Frey test; thermal hyperalgesia was detected by the hot plate test, and depression-like behavior was observed by the tail suspension test. After treatment, peripheral blood was collected from all groups for complete blood biochemical analysis, and the injected feet of the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups were subjected to oxylipin metabolomics analysis. Immunofluorescence double staining was further performed to detect the co-expression of key oxylipin metabolic enzymes(COX2, LTA4H, and 5/12/15-LOX) and macrophage marker CD68 in the sham, CFA, IBU, and YXB-L/M/H groups. Subsequently, confirmatory analysis of positive indicators was conducted in the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups. On D6(acute phase), mechanical pain sensitivity data showed that compared with the CFA group, only the three combination groups(IBU-YXB, IBU-10-YXB, and IBU-1/2-YXB) exhibited significantly increased paw withdrawal thresholds. On D17(chronic phase), only the IBU-10-YXB group showed a mechanical pain threshold significantly higher than all other monotherapy and combination groups. On D17, thermal pain data showed that compared with the CFA group, all groups except IBU-1/2-YXB had significantly prolonged paw withdrawal latency. On D18, tail suspension data showed that compared with the CFA group, the YXB, IBU-YXB, and IBU-10-YXB groups had significantly reduced immobility time. In summary, IBU-10-YXB stably improved the core symptoms of acute and chronic inflammatory pain. Complete blood count data showed that compared with the sham group, the CFA group had significantly increased mean platelet volume(MPV), while compared with the CFA group, the IBU-YXB and IBU-10-YXB groups had significantly reduced MPV. Moreover, the platelet distribution width(PDW) of the IBU-10-YXB group was further reduced compared with the CFA group. These data suggest that the IBU-10-YXB combination regimen has superior effects on inflammation and blood circulation improvement compared with other treatment groups. At the mechanistic level, each treatment group differentially regulated pro-inflammatory and pro-resolving oxylipin(SPM). Specifically, compared with the CFA group, the IBU and IBU-YXB groups significantly inhibited the synthesis of the prostaglandin family downstream of COX2, reducing pro-inflammatory oxylipins PGD2 and 6-keto-PGF1α but inhibiting PGE1 and PGE2, which played positive roles in peripheral circulation, vasodilation, and inflammation resolution. Compared with the CFA group, the YXB group tended to inhibit the pro-inflammatory oxylipin LTB4 downstream of LTA4H and increase SPMs such as LXA4. The IBU-10-YXB group bidirectionally regulated pro-inflammatory oxylipins and SPMs. Compared with IBU, IBU-10-YXB significantly inhibited the pro-inflammatory mediator 5-HETE. Meanwhile, IBU-10-YXB broadly upregulated SPMs, as evidenced by significant upregulation of LXA4 compared with the CFA group, significant upregulation of LXA5 compared with the IBU and IBU-YXB groups, significant upregulation of RvD1 compared with the CFA group and all other treatment groups, and significant upregulation of RvD5 compared with the sham group. Immunofluorescence double staining results were as follows: compared with the CFA group, the IBU group specifically inhibited the oxylipin metabolic enzyme COX2. In the YXB group, COX2, LTA4H, and 5/12-LOX were significantly inhibited. Within the optimal analgesic dose range, YXB's inhibitory effects on COX2 and LTA4H were dose-dependent, while its inhibitory effects on 5/12-LOX were inversely dose-dependent. The two combination groups(IBU-YXB and IBU-10-YXB) inhibited COX2 and LTA4H without significantly affecting 5-LOX, while IBU-10-YXB further significantly inhibited 12-LOX. These results suggest that the IBU-10-YXB combination regimen effectively maintains stable inhibition of COX2, LTA4H, and 12-LOX while enhancing 5-LOX expression. This combinatorial strategy effectively suppresses pro-inflammatory oxylipins and promotes SPM biosynthesis, overcoming IBU's analgesic ceiling effect and its blockade of pain resolution pathways while compensating for YXB's inability to effectively intervene in acute pain and inflammation. Therefore, it achieves more stable anti-inflammatory, analgesic, and antidepressant effects.
Animals
;
Ibuprofen/administration & dosage*
;
Mice
;
Mice, Inbred ICR
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Musculoskeletal Pain/immunology*
;
Tablets
;
Humans
;
Chronic Pain/metabolism*
;
Drug Therapy, Combination
;
Disease Models, Animal
3.Explainable machine learning model for predicting septic shock in critically sepsis patients based on coagulation indexes: A multicenter cohort study.
Qing-Bo ZENG ; En-Lan PENG ; Ye ZHOU ; Qing-Wei LIN ; Lin-Cui ZHONG ; Long-Ping HE ; Nian-Qing ZHANG ; Jing-Chun SONG
Chinese Journal of Traumatology 2025;28(6):404-411
PURPOSE:
Septic shock is associated with high mortality and poor outcomes among sepsis patients with coagulopathy. Although traditional statistical methods or machine learning (ML) algorithms have been proposed to predict septic shock, these potential approaches have never been systematically compared. The present work aimed to develop and compare models to predict septic shock among patients with sepsis.
METHODS:
It is a retrospective cohort study based on 484 patients with sepsis who were admitted to our intensive care units between May 2018 and November 2022. Patients from the 908th Hospital of Chinese PLA Logistical Support Force and Nanchang Hongdu Hospital of Traditional Chinese Medicine were respectively allocated to training (n=311) and validation (n=173) sets. All clinical and laboratory data of sepsis patients characterized by comprehensive coagulation indexes were collected. We developed 5 models based on ML algorithms and 1 model based on a traditional statistical method to predict septic shock in the training cohort. The performance of all models was assessed using the area under the receiver operating characteristic curve and calibration plots. Decision curve analysis was used to evaluate the net benefit of the models. The validation set was applied to verify the predictive accuracy of the models. This study also used Shapley additive explanations method to assess variable importance and explain the prediction made by a ML algorithm.
RESULTS:
Among all patients, 37.2% experienced septic shock. The characteristic curves of the 6 models ranged from 0.833 to 0.962 and 0.630 to 0.744 in the training and validation sets, respectively. The model with the best prediction performance was based on the support vector machine (SVM) algorithm, which was constructed by age, tissue plasminogen activator-inhibitor complex, prothrombin time, international normalized ratio, white blood cells, and platelet counts. The SVM model showed good calibration and discrimination and a greater net benefit in decision curve analysis.
CONCLUSION
The SVM algorithm may be superior to other ML and traditional statistical algorithms for predicting septic shock. Physicians can better understand the reliability of the predictive model by Shapley additive explanations value analysis.
Humans
;
Shock, Septic/blood*
;
Machine Learning
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Aged
;
Sepsis/complications*
;
ROC Curve
;
Cohort Studies
;
Adult
;
Intensive Care Units
;
Algorithms
;
Blood Coagulation
;
Critical Illness
4.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
5.Efficacy and safety of Liqingtong granules in the treatment of hyperuricemia: A randomized double-blind placebo-controlled pilot clinical trial
Jinlian Liu ; Yi Yang ; Meiyu Lv ; Wenting Fei ; Songrui Di ; Mei Luo ; Qing Lin ; Chun Wang ; Linyuan Wang ; Jianjun Zhang
Journal of Traditional Chinese Medical Sciences 2024;11(4):415-422
Objective:
To investigate the efficacy and safety of Liqingtong (LQT) granules in patients with dampness-heat hyperuricemia.
Methods:
A randomized, double-blind, placebo-controlled pilot trial was conducted at the 983rd Hospital of the Joint Logistic Support Force of the People's Liberation Army from March 15, 2023, to August 10, 2023. In total, 119 participants were enrolled in this trial, and participants were given either LQT granules or placebo for 60 days based on a health education. The primary outcome was serum uric acid (SUA) level, and the secondary outcome was the traditional Chinese medicine (TCM) symptom score, measured on days 0, 30, and 60. Safety indicators, including liver function, kidney function, blood routine, glucose, blood lipid, blood pressure, and heart rate were tested on days 0 and 60 of the trial. The data were analyzed using Prism 9 software, and the significance level was set at P < .05.
Results:
Among 119 participants, six in the LQT granule group and seven in the placebo group dropped out, and 106 participants completed clinical observation. Baseline information, including SUA levels, TCM symptom scores, and other clinical characteristics, did not differ between the groups. At the end of the trial, compared with baseline values, the SUA levels in the LQT granule group decreased (P < .001), and no significant change was observed in the placebo group (P = .422); compared with the placebo group, the SUA levels decreased in the LQT granule group (P = .001). Compared with baseline values, the total TCM symptom scores in the LQT granule group decreased (P < .001), with no change in the placebo group (P = .136). Safety indicators did not differ significantly between the two groups.
Conclusion
The pilot trial demonstrated the potential of LQT granules to lower SUA levels and improve symptoms of dampness and heat.
6.Study on anti-myocardial ischemia active components and mechanism of Xinkeshu tablets based on network pharmacology and zebrafish model
Lin-Hua HOU ; Hua-Zheng ZHANG ; Shuo GAO ; Yun ZHANG ; Qiu-Xia HE ; Ke-Chun LIU ; Chen SUN ; Jian-Heng LI ; Qing XIA
Chinese Pharmacological Bulletin 2024;40(5):964-974
Aim To study the active ingredients and mechanism of action of Xinkeshu tablets against myo-cardial ischemia by network pharmacology and ze-brafish model.Methods The anti-myocardial ische-mia activity of Xinkeshu tablets was evaluated by iso-prenaline hydrochloride(ISO)-induced zebrafish myo-cardial ischemia model and H2O2-induced H9c2 dam-age model.The active ingredients of Xinkeshu tablets were retrieved using databases such as TCMSP.The potential targets were predicted by PharmaMapper data-base.Myocardial ischemic disease targets were searched by OMIM database.The potential therapeutic targets of Xinkeshu tablets against myocardial ischemia were analyzed.GO and KEGG enrichment analysis were conducted on core targets.The active ingredients were verified by zebrafish and cell model.qRT-PCR was used to detect the expression of key targets.Re-sults Xinkeshu tablets could significantly alleviate ISO-induced pericardial edema and bradycardia.It al-so could increase sinus venous-bulb aortic(SV-BA)distance and improve the cell viability.The 30 poten-tial active ingredients of Xinkeshu tables mainly acted on 30 core targets,including ALB,AKT1 and MAPK1,to regulate 627 GO items,including protein phosphorylation,negative regulation of apoptosis and positive regulation of PI3K signal transduction.KEGG results showed that 117 signaling pathways,including PI3K/Akt,FOXO and Ras,exerted anti-myocardial ischemia effect.Salvianolic acid A,lithospermic acid,rosmarinic acid,salvianolic acid D,salvianolic acid B,ginsenoside Rg2,hyperoside,3'-methoxypuerarin,3'-hydroxypuerarin and ginsenoside Rg1 could alleviate ISO-induced zebrafish myocardial ischemia and im-prove the cell viability.Xinkeshu tablets could upregu-late the expression of genes such as ras and akt1,and downregulate the expression of genes such as mapk1 and mapk8.Conclusion The active ingredients,in-cluding salvianolic acid A in Xinkeshu tablets,exert anti-myocardial ischemia effects by targeting targets,such as AKT1,MAPK1,and regulating signaling path-ways,such as PI3K/Akt,MAPK and Ras.
7.Effect of Guben Yanling pills in antagonising liver aging in mice through NF-κB signaling pathway and its mechanism
Yi HUA ; Yu-Chun ZHOU ; Rong-Chun SUI ; Xian-Qing DENG ; Song-Yang LIN ; Guang-Bin LE ; Yun XIAO ; Ming-Xia SONG
Chinese Pharmacological Bulletin 2024;40(7):1367-1374
Aim To study the effect of Guben Yanling pills on liver aging in aging mice and the related mech-anism.Methods The mice were randomly divided in-to blank control group,model group,vitamin E group(0.1 g·kg-1)and low,medium and high dose groups(0.59,1.17,2.34 g·kg-1)of Guben Yan-ling pills.The aging mouse model was established by subcutaneous injection of D-galactose(150 mg·kg-1)into the back of neck.At the same time of mod-eling,the corresponding drugs were given by gavage once a day for six weeks.The main organ indexes were calculated.HE staining was used to observe the mor-phology of liver tissue.Colorimetry was used to detect the activity of β-galactosidase in liver.ELISA was used to detect the content of TNF-α,IL-1 β,IL-6,IL-4,IL-10.Western blot was used to detect the protein relative expression level of IKKβ,Iκ Bα,NF-κB p65.Immunofluorescence was used to detect the expression level of NF-κB p65.Results Compared with the blank control group,the organ index of the brain,liv-er,kidney,spleen,and thymus in the model group decreased(P<0.05,P<0.01),the activity of β-galactosidase increased(P<0.01),liver tissue mor-phology and structure were significantly damaged,the content of TNF-α,IL-1 β and IL-6 increased(P<0.01),the content of IL-4 and IL-10 decreased(P<0.01),the levels of IKKβ,NF-κB p65 in-creased(P<0.01),the levels of IKBα decreased(P<0.01),and the levels of NF-κB p65 in nucleus increased(P<0.01).Compared with the model group,the organ indexes of brain,liver,kidney,spleen,and thymus in each dose group of Guben Yan-ling pills increased(P<0.05,P<0.01),the activity of β-galactosidase decreased(P<0.01),the morpho-logical and structural damage of liver tissue was signifi-cantly improved,the content of TNF-α,IL-1 β and IL-6 decreased(P<0.01),the content of IL-4 and IL-10 increased(P<0.01),the levels of IKKβ,NF-κB p65 decreased(P<0.01),the levels of IκBα in-creased(P<0.01),and the levels of NF-κB p65 in nucleus decreased(P<0.01).Conclusions Guben Yanling pills can antagonize liver aging in mice,and its mechanism may be related to inhibiting the activa-tion of NF-κB signaling pathway in liver,downregulat-ing downstream pro-inflammatory factor levels,upregu-lating anti-inflammatory factor levels,and alleviating inflammation in liver.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.


Result Analysis
Print
Save
E-mail