1.Mechanism of Intervening with Diarrhea-predominant Irritable Bowel Syndrome in Rats with Spleen Deficiency by Xingpi Capsules Through Regulating 5-HT-RhoA/ROCK2 Pathway
Gang WANG ; Lingwen CUI ; Xiangning LIU ; Rongxin ZHU ; Mingyue HUANG ; Ying SUN ; Boyang JIAO ; Ran WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):60-69
ObjectiveTo investigate the efficacy of Xingpi capsules (XPC) in treating diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and elucidate its potential molecular mechanisms. MethodsA rat model of IBS-D with spleen deficiency was established by administering senna leaf in combination with restrained stress and swimming fatigue for 14 d. Ten specific pathogen free (SPF)-grade healthy rats were used as the normal control group. After successful modeling, SPF-grade rats were randomly divided into a model group, a pinaverium bromide group (1.5 mg·kg-1), and low- and high-dose XPC groups (0.135 and 0.54 g·kg-1), with 10 rats in each group. Rats in the normal control group and the model group were given distilled water by gavage, while the remaining groups were administered corresponding drug solutions by gavage once a day for 14 consecutive days. The rat body weights and fecal condition were observed every day, and the Bristol score was recorded. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of 5-hydroxytryptamine (5-HT) in serum and colon tissue. Transmission electron microscopy was used to observe the microvilli and tight junctions in the colon. The integrity of the colonic barrier, intestinal motility, and expression of related pathway proteins were evaluated by hematoxylin-eosin (HE) staining, immunohistochemistry, and Western blot. ResultsCompared with those in the normal control group, rats in the model group showed a significantly decreased body weight and increased diarrhea rate, diarrhea grade, and Bristol score (P<0.01). HE staining revealed incomplete colonic mucosa in the model group, with evident congestion and edema observed. Electron microscopy results indicated decreased density and integrity of the colonic barrier, shedding and disappearance of microvilli, and significant widening of tight junctions. The expression levels of colonic tight junction proteins Occludin and Claudin-5 were downregulated (P<0.01), and the levels of 5-HT in serum and colon tissue were elevated (P<0.01). The small intestine propulsion rate significantly increased (P<0.01), and the expression of contractile proteins Ras homolog family member A (RhoA) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) in colon and phosphorylation of myosin light chain (MLC20) were upregulated (P<0.01). Compared with the model group, the treatment groups showed alleviated diarrhea, diarrhea-associated symptoms, and pathological manifestations of colon tissue to varying degrees. Specifically, high-dose XPC exhibited effectively relieved diarrhea, promoted recovery of colonic mucosal structure, significantly reduced congestion and edema, upregulated expression of Occludin and Claudin-5 (P<0.01), decreased levels of 5-HT in serum and colon tissue (P<0.05,P<0.01), significantly slowed small intestine propulsion rate (P<0.01), and significantly downregulated expression of contractile proteins RhoA and ROCK2 in colon and phosphorylation of MLC20 (P<0.05,P<0.01). ConclusionXPC effectively alleviates symptoms of spleen deficiency and diarrhea and regulates the secretion of brain-gut peptide. The characteristics of XPC are mainly manifested in alleviating IBS-D with spleen deficiency from the aspects of protecting intestinal mucosa and inhibiting smooth muscle contraction, and the mechanism is closely related to the regulation of the 5-HT-RhoA/ROCK2 pathway expression.
2.Advances in oral distant targeted nanodelivery systems
Min SUN ; Chuan-sheng HUANG ; Li-ping WANG ; Xu-li RUAN ; Yun-li ZHAO ; Xin-chun WANG
Acta Pharmaceutica Sinica 2025;60(1):72-81
Due to patient compliance and convenience, oral medication is likely the most common and acceptable method of drug administration. However, traditional dosage forms such as tablets or capsules may lead to low drug bioavailability and poor therapeutic efficiency. Therefore, with advancements in material science and micro/nano manufacturing technology, various carriers have been developed to enhance drug absorption in the gastrointestinal tract. In this context, we initially discuss the key biological factors that hinder drug transport and absorption (including anatomical, physical, and biological factors). Building on this foundation, recent progress in both conventional and innovative oral drug delivery routes aimed at improving drug bioavailability and targeting is reviewed. Finally, we explore future prospects for oral drug delivery systems as well as potential challenges in clinical translation.
3.Shexiang Tongxin dropping pills ameliorate myocardial ischemia-reperfusion injury progression via the S1PR2/RhoA/ROCK pathway
Ying Sun ; Boyang Jiao ; Yizhou Liu ; Ran Wang ; Qiong Deng ; David N Criddle ; Yulin Ouyang ; Wei Wang ; Xuegong Xu ; Chun Li
Journal of Traditional Chinese Medical Sciences 2025;2025(1):31-43
Objective:
To investigate the potential protective effect of Shexiang Tongxin dropping pills (STDP) on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvascular disease (CMVD).
Methods:
A rat model of myocardial ischemia-reperfusion injury with CMVD was established using ligation and reperfusion of the left anterior descending artery. The effect of STDP (21.6 mg/kg) on cardiac function was evaluated using echocardiography, hematoxylin-eosin staining, and Evans blue staining. The effects of STDP on the microvascular endothelial barrier were assessed based on nitric oxide production, endothelial nitric oxide synthase expression, structural variety of tight junctions (TJs), and the expression of zonula occludens-1 (ZO-1), claudin-5, occludin, and vascular endothelial (VE)-cadherin proteins. The mechanisms of STDP (50 and 100 ng/mL) were evaluated by examining the expression of sphingosine 1-phosphate receptor 2 (S1PR2), Ras Homolog family member A (RhoA), and Rho-associated coiled-coil-containing protein kinase (ROCK) proteins and the distribution of ZO-1, VE-cadherin, and F-actin proteins in an oxygen and glucose deprivation/reoxygenation model.
Results:
The administration of STDP on CMVD rat model significantly improved cardiac and microvascular endothelial cell barrier functions (all P < .05). STDP enhanced the structural integrity of coronary microvascular positioning and distribution by clarifying and completing TJs and increasing the expression of ZO-1, occludin, claudin-5, and VE-cadherin in vivo (all P < .05). The S1PR2/RhoA/ROCK pathway was inhibited by STDP in vitro, leading to the regulation of endothelial cell TJs, adhesion junctions, and cytoskeletal morphology.
Conclusion
STDP showed protective effects on cardiac impairment and microvascular endothelial barrier injury in CMVD model rats induced by myocardial ischemia-reperfusion injury through the modulation of the S1PR2/RhoA/ROCK pathway.
4.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
5.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
6.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
7.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*
8.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
9.Phenotypic screening uncovered anti-myocardial fibrosis candidates using a novel 3D myocardial tissue under hypoxia.
Jingyu WANG ; Xiangning LIU ; Rongxin ZHU ; Ying SUN ; Boyang JIAO ; Keyan WANG ; Yong JIANG ; Yong WANG ; Chun LI ; Wei WANG
Acta Pharmaceutica Sinica B 2025;15(6):3008-3024
Myocardial fibrosis (MF) is a common pathological hallmark of cardiovascular diseases, reflecting shared mechanisms in their progression. However, the lack of reliable MF models that accurately mimic its pathogenesis has hindered drug discovery, highlighting the urgent need for more effective therapeutic agents. Herein, a novel contractile three-dimensional (3D) myocardial tissue model integrating cardiomyocytes, cardiac-fibroblasts, and bone marrow-derived macrophages in collagen hydrogel was developed to simulate the fibrotic changes of cardiovascular disease, and facilitate the screening of anti-MF compounds. The 3D myocardial tissue model exhibited precise, visualizable, and quantifiable contractile characteristics under hypoxia and drug interventions. 76 compounds extracted from the resins of Toxicodendron vernicifluum, a traditional Chinese medicine with clear clinical benefits for fibrotic diseases, were screened for anti-fibrotic activity. Using an in vitro 3D oxygen-glucose deprivation (OGD)-treated myocardial tissue model instead of a two-dimensional transforming growth factor-β treated cardiac-fibroblasts model, two candidates including LQ-40 and SQ-3 exert impressive anti-MF activity, which was further validated in left anterior descending coronary artery ligation-induced MF mouse model. The current results demonstrate the feasibility and advantage of the novel contractile 3D tissue model with multi-cell types in discovering candidates for MF, further stressing the great potential of regulating macrophages in the treatment of MF.
10.Study on effect and mechanisms of Carthami Flos water extract and hydroxysafflower yellow A on primary dysmenorrhea rats with cold coagulation and blood stasis
Ran WANG ; Ying SUN ; Boyang JIAO ; Chun LI ; Jun LI ; Pengfei TU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(10):1397-1407
Objective To explore the pharmacological effects and regulatory mechanisms of Carthami Flos water extract and its main constituent,hydroxysafflower yellow A(HSYA),on primary dysmenorrhea rats with cold coagulation and blood stasis.Methods Forty-two female specific pathogen-free grade rats aged 6-8 weeks were divided into blank,model,HSYA(0.01 g/kg),ibuprofen(0.04 g/kg),and low(0.06 g/kg),medium(0.20 g/kg),and high(0.40 g/kg)Carthami Flos water extract dose groups using the random number table method,with six rats per group.A rat model was established using ice water bath stimulation combined with estradiol benzoate and oxytocin.Continuous gavage was administered for 6 days from the seventh day of modeling.After the intervention,the writhing reaction test was conducted.The rats,uteri,and ovaries were weighed to calculate the organ index.An enzyme-linked immunosorbent assay and radioimmunoassay were used to detect the prostaglandin E2(PGE2)and prostaglandin F2α(PGF2α)contents in the uterus,thromboxane B2(TXB2)and 6-keto-prostaglondin F1α(6-keto-PGF1α)in plasma,and estradiol(E2)in the serum.Hematoxylin and eosin staining were used to detect the pathological changes in uterine tissue.Immunohistochemistry was used to determine cyclooxygenase-2(COX-2)expression in uterine tissue,whereas immunofluorescence was used to measure follicle-stimulating hormone receptor(FSH-R)expression in ovarian tissue.Western blotting was used to detect gonadotropin-releasing hormone receptor(GnRH-R)and FSH-R expression in uterine tissue.Results Compared with the blank group,the rats in the model group exhibited an increase in uterine and ovarian indices and increased PGE2 and PGF2α in the uterus.TXB2 in the plasma and E2 in the serum were also evaluated.Additionally,6-keto-PGF1α decreased,and COX-2,GnRH-R,and FSH-R expression in the uterus and FSH-R expression in the ovaries also increased(P<0.05).The morphology of the uterine tissue was disordered.Compared with the model group,the low Carthami Flos water extract dose group showed a decrease in uterine index(P<0.05).In the medium and high Carthami Flos water extract dose groups,the writhing response decreased,as did the uterine and ovarian indicesand PGE2 and TXB2 contents.The 6-keto-PGF1α content increased,whereas the GnRH-R protein expression in the uterus decreased(P<0.05).The high Carthami Flos water extract dose group also showed a decrease in PGF2α and FSH-R protein expression in the uterus(P<0.05).In the HSYA group,the writhing response decreased,the uterine and ovarian indices decreased,the PGE2,PGF2α,and TXB2 contents decreased,and GnRH-R and FSH-R protein expression decreased in the uterus(P<0.05).The serum E2 levels of the groups that received Carthami Flos water extract at various doses and those of the HSYA group were reduced,and the uterine morphology was improved.COX-2 expression in the uterus and FSH-R protein expression in the ovaries were also reduced(P<0.05).Conclusion Carthami Flos water extract and HSYA can improve the pathological state of primary dysmenorrhea rats with cold coagulation and blood stasis.Its mechanism may be related to regulating the hypothalamic-pituitary-ovary axis.


Result Analysis
Print
Save
E-mail