1.Immunomodulatory effect of short-chain fatty acids in hepatic encephalopathy and its potential diagnostic value
Weiyu CHEN ; Dewen MAO ; Han WANG ; Yang DU ; Wenqian FENG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(5):954-962
Hepatic encephalopathy (HE) is a common complication of severe liver disease in the end stage, and it is urgently needed to improve the rate of effective treatment and clarify the pathogenesis of HE. The liver is a crucial hub for immune regulation, and disruption of immune homeostasis is a key factor in the pathological mechanisms of HE. As the main metabolites of intestinal flora, short-chain fatty acids (SCFAs) play a vital role in the biological processes of both innate and adaptive immunity and can regulate the proliferation and differentiation of immune cells maintain the homeostasis of intestinal microenvironment and the integrity of barrier function. Studies have shown that SCFAs participate in bidirectional and dynamic interactions with the liver-gut-brain axis through immunomodulatory pathways, thereby playing an important role in the diagnosis, treatment, and prognostic evaluation of HE. Starting from the immunoregulatory effect of SCFAs, this article summarizes and analyzes the crosstalk relationship between SCFAs and the liver-gut-brain axis and the significance of SCFAs in the diagnosis and treatment of HE, in order to provide new ideas for optimizing clinical prevention and treatment strategies.
2.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
3.A new cephalotaxine-type alkaloid dimer from Cephalotaxus lanceolata.
Jia-Yang MA ; Jing WANG ; Sha CHEN ; Chun-Lei YUAN ; Jin-Yuan YANG ; Da-Hong LI ; Hui-Ming HUA
China Journal of Chinese Materia Medica 2025;50(13):3729-3741
The chemical constituents from Cephalotaxus lanceolata were isolated and purified by using multiple chromatographic techniques, including octadecylsilane(ODS), silica gel, Sephadex LH-20 column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). A total of 17 compounds obtained were identified by using spectroscopic methods such as nuclear magnetic resonance(NMR), mass spectrometry(MS), and ultraviolet(UV) combined with literature data. Compound 1 was a new alkaloid dimer, named cephalancetine E. The known compounds were determined as cephalancetine A(2), 11-hydroxycephalotaxine(3), 4-hydroxycephalotaxine(4), cephalotaxine(5), epicephalotaxine(6), cephalotaxine β-N-oxide(7), acetylcephalotaxine(8), cephalotine A(9), cephalotine B(10), 11-hydroxycephalotaxine hemiketal(11), 3-deoxy-3,11-epoxy-cephalotaxine(12), cephalotaxinone(13), isocephalotaxinone(14), 2,11-epoxy-1,2-dihydro-8-oxo-cephalotaxine(15), cephalotaxamide(16), and drupacine(17), respectively. Compounds 11, 12, and 15 were isolated from the Cephalotaxus genus for the first time. The biological activity was tested for compounds 1-17. The results reveal that compound 17 displays potent inhibitory activities against three human cancer cell lines(HepG-2, MCF-7, and SH-SY5Y).
Cephalotaxus/chemistry*
;
Humans
;
Cell Line, Tumor
;
Drugs, Chinese Herbal/pharmacology*
;
Harringtonines/pharmacology*
;
Molecular Structure
;
Dimerization
;
Alkaloids/isolation & purification*
;
Magnetic Resonance Spectroscopy
4.Efficacy and Safety of DCAG Regimen in Patients with Relapsed/Refractory Acute Myeloid Leukemia.
Hui-Sheng ZHOU ; Yu-Qing LI ; Yu-Xin WANG ; Ya-Lei HU ; Kai-Li MIN ; Chun-Ji GAO ; Dai-Hong LIU ; Xiao-Ning GAO
Journal of Experimental Hematology 2025;33(1):9-19
OBJECTIVE:
To evaluate the efficacy and safety of DCAG (decitabine, cytarabine, anthracyclines, and granulocyte colony-stimulating factor) regimen in the treatment of patients with relapsed/refractory (R/R) acute myeloid leukemia (AML).
METHODS:
The clinical data of 64 R/R AML patients received treatment at Chinese PLA General Hospital from January 1st, 2012 to December 31st, 2022 were retrospectively analyzed. Primary endpoints included efficacy measured by overall response rate (ORR) and safety. Secondary endpoints included overall survival (OS), event-free survival (EFS) and duration of response (DOR). The patients were followed from enrollment until death, or the end of last follow-up (June 1st, 2023), whichever occurred first.
RESULTS:
Sixty-four patients who failed prior therapy were enrolled and completed 1 cycle, and 26 and 5 patients completed 2 and 3 cycles, respectively. Objective response rate was 67.2% [39: complete remission (CR)/CR with incomplete hematologic recovery (CRi), 4: partial remission (PR)]. With a median follow-up of 62.0 months (1.0-120.9), the median overall survival (OS) was 23.3 and event-free survival was 10.6 months. The median OS was 51.7 months (3.4-100.0) in responders (CR/CRi/PR) while it was 8.4 months (6.1-10.7) in nonresponders ( P <0.001). Grade 3-4 hematologic toxicities were observed in all patients. Four patients died from rapid disease progression within 8 weeks after chemotherapy.
CONCLUSION
The DCAG regimen represents a feasible and effective treatment for R/R AML.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Cytarabine/administration & dosage*
;
Granulocyte Colony-Stimulating Factor/administration & dosage*
;
Retrospective Studies
;
Male
;
Female
;
Decitabine
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Anthracyclines/administration & dosage*
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Aged
;
Recurrence
5.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
6.Mechanisms and Efficacy of Chinese Herbal Medicines in Benign Prostatic Hyperplasia.
Fu WANG ; Dong-Yue MA ; Jiu-Tian YANG ; Dong-Fang LYU ; Qing-He GAO ; Chun-Lei LI ; Chong-Fu ZHONG
Chinese journal of integrative medicine 2025;31(1):73-82
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men, the incidence of which gradually increases with age and leads to lower urinary tract symptoms (LUTS), which seriously affects the quality of life of patients. Chinese herbal medicines (CHMs) are widely used for the treatment of BPH in China and some other countries. To explore the molecular mechanisms of CHMs for BPH, we conducted a review based on peer-reviewed English-language publications in PubMed and Web of Science databases from inception to December 31, 2023. This article primarily reviewed 32 papers on the use of CHMs and its active compounds in the treatment of BPH, covering animal and cell experiments, and identified relevant mechanisms of action. The results suggest that the mechanisms of action of CHMs in treating BPH may involve the regulation of sex hormones, downregulation of cell growth factors, anti-inflammatory and antioxidative effects, inhibition of cell proliferation, and promotion of apoptosis. CHMs also exhibit α-blocker-like effects, with the potential to relax urethral smooth muscle and alleviate LUTS. Additionally, we also reviewed 4 clinical trials and meta-analyses of CHMs for the treatment of BPH patients, which provided initial evidence of the safety and effectiveness of CHMs treatment. CHMs treatment for BPH shows advantages as a multi-component, multi-target, and multi-pathway therapy, which can mitigate the severity of the disease, improve LUTS, and may become a reliable treatment option in the future.
Prostatic Hyperplasia/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Animals
7.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
8.A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids.
Yaoting LI ; Yuhan FENG ; Wan GUO ; Yu GAO ; Jiatao ZHANG ; Lu YANG ; Chun LEI ; Yun KANG ; Yaqin WANG ; Xudong QU ; Jianming HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):630-640
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Cytochrome P-450 Enzyme System/chemistry*
;
Benzylisoquinolines/chemistry*
;
Hydroxylation
;
Plant Proteins/chemistry*
;
Alkaloids/metabolism*
;
Stephania tetrandra/genetics*
10.Protective mechanism of rhubarb decoction against inflammatory damage of brain tissue in rats with mild hepatic encephalopathy: A study based on the PI3K/AKT/mTOR signaling pathway
Guangfa ZHANG ; Yingying CAI ; Long LIN ; Lei FU ; Fan YAO ; Meng WANG ; Rongzhen ZHANG ; Yueqiao CHEN ; Liangjiang HUANG ; Han WANG ; Yun SU ; Yanmei LAN ; Yingyu LE ; Dewen MAO ; Chun YAO
Journal of Clinical Hepatology 2024;40(2):312-318
ObjectiveTo investigate the role and possible mechanism of action of rhubarb decoction (RD) retention enema in improving inflammatory damage of brain tissue in a rat model of mild hepatic encephalopathy (MHE). MethodsA total of 60 male Sprague-Dawley rats were divided into blank group (CON group with 6 rats) and chronic liver cirrhosis modeling group with 54 rats using the complete randomization method. After 12 weeks, 40 rats with successful modeling which were confirmed to meet the requirements for MHE model by the Morris water maze test were randomly divided into model group (MOD group), lactulose group (LT group), low-dose RD group (RD1 group), middle-dose RD group (RD2 group), and high-dose RD group (RD3 group), with 8 rats in each group. The rats in the CON group and the MOD group were given retention enema with 2 mL of normal saline once a day; the rats in the LT group were given retention enema with 2 mL of lactulose at a dose of 22.5% once a day; the rats in the RD1, RD2, and RD3 groups were given retention enema with 2 mL RD at a dose of 2.5, 5.0, and 7.5 g/kg, respectively, once a day. After 10 days of treatment, the Morris water maze test was performed to analyze the spatial learning and memory abilities of rats. The rats were analyzed from the following aspects: behavioral status; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and the level of blood ammonia; pathological changes of liver tissue and brain tissue; the mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in brain tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the MOD group, the RD1, RD2, and RD3 groups had a significantly shorter escape latency (all P<0.01), significant reductions in the levels of ALT, AST, IL-1β, IL-6, TNF-α, and blood ammonia (all P<0.05), significant alleviation of the degeneration, necrosis, and inflammation of hepatocytes and brain cells, and significant reductions in the mRNA and protein expression levels of PI3K, AKT, and mTOR in brain tissue (all P<0.05), and the RD3 group had a better treatment outcome than the RD1 and RD2 groups. ConclusionRetention enema with RD can improve cognitive function and inflammatory damage of brain tissue in MHE rats, possibly by regulating the PI3K/AKT/mTOR signaling pathway.

Result Analysis
Print
Save
E-mail