1.Vonoprazan 10 mg or 20 mg vs. lansoprazole 15 mg as maintenance therapy in Asian patients with healed erosive esophagitis: A randomized controlled trial
Yinglian XIAO ; Jiaming QIAN ; Shutian ZHANG ; Ning DAI ; Jai Hoon CHUN ; Chengtang CHIU ; Fung Chui CHONG ; Nobuo FUNAO ; Yuuichi SAKURAI ; D. Jessica EISNER ; Li XIE ; Minhu CHEN
Chinese Medical Journal 2024;137(8):962-971
Background::Erosive esophagitis (EE) is a gastroesophageal reflux disease characterized by mucosal breaks in the esophagus. Proton pump inhibitors are widely used as maintenance therapy for EE, but many patients still relapse. In this trial, we evaluated the noninferiority of vonoprazan vs. lansoprazole as maintenance therapy in patients with healed EE. Methods::We performed a double-blind, double-dummy, multicenter, phase 3 clinical trial among non-Japanese Asian adults with endoscopically confirmed healed EE from April 2015 to February 2019. Patients from China, South Korea, and Malaysia were randomized to vonoprazan 10 mg or 20 mg once daily or lansoprazole 15 mg once daily for 24 weeks. The primary endpoint was endoscopically confirmed EE recurrence rate over 24 weeks with a noninferiority margin of 10% using a two-sided 95% confidence interval (CI). Treatment-emergent adverse events (TEAEs) were recorded.Results::Among 703 patients, EE recurrence was observed in 24/181 (13.3%) and 21/171 (12.3%) patients receiving vonoprazan 10 mg or 20 mg, respectively, and 47/184 (25.5%) patients receiving lansoprazole (differences: -12.3% [95% CI, -20.3% to-4.3%] and -13.3% [95% CI, -21.3% to -5.3%], respectively), meeting the primary endpoint of noninferiority to lansoprazole in preventing EE recurrence at 24 weeks. Evidence of superiority (upper bound of 95% CI <0%) was also observed. At 12 weeks, endoscopically confirmed EE recurrence was observed in 5/18, 2/20, and 7/20 of patients receiving vonoprazan 10 mg, vonoprazan 20 mg, and lansoprazole, respectively. TEAEs were experienced by 66.8% (157/235), 69.0% (156/226), and 65.3% (158/242) of patients receiving vonoprazan 10 mg, vonoprazan 20 mg, and lansoprazole, respectively. The most common TEAE was upper respiratory tract infection in 12.8% (30/235) and 12.8% (29/226) patients in vonoprazan 10 mg and 20 mg groups, respectively and 8.7% (21/242) patients in lansoprazole group.Conclusion::Vonoprazan maintenance therapy was well-tolerated and noninferior to lansoprazole for preventing EE recurrence in Asian patients with healed EE.Trial Registration::https://clinicaltrials.gov; NCT02388737.
2.Comparison of a new thermosensitive rhAm carrier versus traditional PGA carrier for in vitro antibacterial activity and biocompatibility.
Journal of Southern Medical University 2022;42(9):1418-1425
OBJECTIVE:
To compare a new thermosensitive recombinant human amelogenin (rhAm) carrier and traditional propylene glycol alginate (PGA) carrier for their characteristics, antibacterial activity, and biocompatibility with human periodontal membrane fibroblasts.
METHODS:
PGA-rhAm was prepared by mixing 3.3% PGA and rhAm, and CS-βGP-rhAm was prepared by mixing 2% chitosan (CS) with rhAm and then with 60% β-sodium glycerophosphate solution (βGP) as the crosslinking agent. The biophysical properties of the prepared carriers were characterized, and their antibacterial activity was assessed by observing Staphylococcus aureus growth. The biocompatibility of the carriers was evaluated in human periodontal membrane fibroblasts (hPDLFs) using CCK8 assay and scratch test, and mRNA and protein expressions of osteogenic genes of the cells incubated with the carriers were detected using RT-qPCR and Western blotting; osteogenic differentiation of the cells was detected using alkaline phosphatase staining.
RESULTS:
PGA-rhAm had a viscosity value of 3.262±0.055 Pa.s. CS-βGP-rhAm had a solidification capacity of 6 min at 37 ℃ with a pH value close to that of the oral cavity and a swelling rate of about 90%. CS-β GP-rhAm maintained sustained release of rhAm for over 2 weeks with a self-degradation time over 3 weeks. CS-βGPrhAm more effectively inhibited the growth of S. aureus than rhAm-loaded PGA. While PGA did not obviously affect the proliferation of hPDLFs, both CS-βGP and CS-βGP-rhAm significantly promoted the cell proliferation(P < 0.001). Scratch test showed that after rhAm loading, both CS-βGP and PGA promoted cell migration (P < 0.01). CS-βGP-rhAm significantly enhanced the mRNA expressions of RUNX2 and OCN mRNA level and the protein expressions of Ki67, RUNX2, collagen I, and β-catenin (P < 0.05); PGA-rhAm only enhanced RUNX2 (P < 0.05) and OCN (P < 0.01) mRNA expressions without significant effects on the protein expressions. Alkaline phosphatase staining results showed that CS-βGP, but not PGA, promoted osteogenic differentiation of hPDLFs.
CONCLUSION
CS-βGP carrier is capable of sustained release of rhAm, inhibiting the growth of S. aureus, and improving the biological activity of hPDLFs without affecting the bioactivity of rhAm after drug loading.
Alginates
;
Alkaline Phosphatase
;
Amelogenin
;
Anti-Bacterial Agents/pharmacology*
;
Cell Differentiation
;
Cells, Cultured
;
Chitosan/pharmacology*
;
Collagen
;
Core Binding Factor Alpha 1 Subunit
;
Delayed-Action Preparations
;
Glycerophosphates
;
Humans
;
Ki-67 Antigen
;
Osteogenesis
;
Periodontal Ligament
;
RNA, Messenger
;
Staphylococcus aureus
;
beta Catenin
3.Hepatic protective effects of Shenling Baizhu powder, a herbal compound, against inflammatory damage via TLR4/NLRP3 signalling pathway in rats with nonalcoholic fatty liver disease.
Mao-Xing PAN ; Chui-Yang ZHENG ; Yuan-Jun DENG ; Kai-Rui TANG ; Huan NIE ; Ji-Qian XIE ; Dong-Dong LIU ; Gui-Fang TU ; Qin-He YANG ; Yu-Pei ZHANG
Journal of Integrative Medicine 2021;19(5):428-438
OBJECTIVE:
High-fat diet (HFD) and inflammation are two key contributors to nonalcoholic fatty liver disease (NAFLD). Shenling Baizhu powder (SLBZP), a classical herbal compound, has been successfully used to alleviate NAFLD. However, its specific mechanisms are not fully understood. In this study, we assessed the anti-NAFLD effect of SLBZP in vivo.
METHODS:
Rats were fed an HFD with or without SLBZP or with probiotics. At the end of week 16, an echo magnetic resonance imaging (EchoMRI) body composition analyser was used to quantitatively analyse body composition; a micro-computed tomography (micro-CT) imaging system was used to evaluate whole body and liver fat; and the Moor full-field laser perfusion imager 2 was used to assess liver microcirculation, after which, all rats were sacrificed. Then, biochemical indicators in the blood and the ultrastructure of rat livers were evaluated. Protein expression related to the liver Toll-like receptor 4 (TLR4)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) signalling pathway was assessed using Western blot analysis. Further, high-throughput screening of 29 related inflammatory factors in liver tissue was performed using a cytokine array.
RESULTS:
SLBZP supplementation reduced body weight, serum free fatty acid, and insulin resistance index (P < 0.05). It also ameliorated liver microcirculation and ultrastructural abnormalities. EchoMRI and micro-CT quantitative analyses showed that treatment with SLBZP reduced fat mass and visceral fat (P < 0.05 and P < 0.01, respectively). In addition, SLBZP decreased the expression of lipopolysaccharide (LPS)-activated TLR4/NLRP3 signalling pathway-related proteins and altered the expression levels of some inflammatory cytokines in liver tissues.
CONCLUSION
SLBZP can inhibit NLRP3 inflammasome activation and interleukin-1β release by suppressing LPS-induced TLR4 expression in rats with HFD-induced NAFLD. Thus, SLBZP may be beneficial for the prevention and treatment of inflammatory damage and associated diseases.
Animals
;
Liver
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Powders
;
Rats
;
Toll-Like Receptor 4
;
X-Ray Microtomography
4. Antibacterial activity of bacillomycin D-like compounds isolated from Bacillus amyloliquefaciens HAB-2 against Burkholderia pseudomallei
Mamy RAJAOFERA ; Xun KANG ; Xin CHEN ; Chen-Chu LI ; Li YIN ; Lin LIU ; Qing-Hui SUN ; Nan ZHANG ; Chui-Zhe CHEN ; Na HE ; Qian-Feng XIA ; Peng-Fei JIN ; Wei-Guo MIAO
Asian Pacific Journal of Tropical Biomedicine 2020;10(4):183-188
Objective: To investigate the inhibitory effect on Burkholderia pseudomallei (B. pseudomallei) strain HNBP001 of a bacillomycin D-like cyclic lipopeptide compound named bacillomycin DC isolated from Bacillus amyloliquefaciens HAB-2. Methods: The antibacterial effect of bacillomycin DC on B. pseudomallei was determined using the disk diffusion method. The minimum inhibitory concentrations were evaluated by microdilution assay. In addition, transmission electron microscopy was performed and quantitative real-time polymerase chain reaction assay was carried out to determine the expression of MexB, OprD2, and qnrS genes. Results: Bacillomycin DC produced an inhibition zone against B. pseudomallei with minimum inhibitory concentration values of 12.5 μg/mL 24 h after treatment and 50 μg/mL at 48 and 72 h. Transmission electron microscopy showed that bacillomycin DC resulted in roughening cell surface and cell membrane damage. Quantitative real-time polymerase chain reaction analysis showed low expression of MexB, OprD2 and qnrS genes. Conclusions: Bacillomycin DC inhibits the growth of B. pseudomallei and can be a new candidate for antimicrobial agents of B. pseudomallei. Rajaofera Mamy 1 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Kang Xun 2 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Jin Peng-Fei 3 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, Hainan Chen Xin 4 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Li Chen-Chu 5 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Yin Li 6 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Liu Lin 7 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Sun Qing-Hui 8 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Zhang Nan 9 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Chen Chui-Zhe 10 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan He Na 11 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Xia Qian-Feng 12 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Miao Wei-Guo 13 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, Hainan Kung CT, Lee CH, Li CJ, Lu HI, Ko SF, Liu JW. Development of ceftazidime resistance in Burkholderia pseudomallei in a patient experiencing melioidosis with mediastinal lymphadenitis. Ann Acad Med Singapore 2010; 39(12): 945-947. Mohamad NI, Harun A, Hasan H, Deris Z. In-vitro activity of doxycycline and β-lactam combinations against different strains of Burkholderia pseudomallei. Indian J Microbiol 2018; 58(2): 244-247. Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, et al. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010; 82(6): 1113-1117. Bond TEH, Sorenson AE, Schaeffer PM. Functional characterization of Burkholderia pseudomallei, biotin protein ligase: A toolkit for anti-melioidosis drug development. Microbiol Res 2017; 199: 40-48. Alatoom A, Elsayed H, Lawlor K, AbdelWareth L, El-Lababidi R, Cardona L, et al. Comparison of antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int J Infect Dis 2017; 62: 39-43. Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott BM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 2016; 1(1): 15008. Dutta S, Haq S, Hasan MR, Haq JA. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh. BMC Research Notes 2017; 10(1): 299. Platt R. Adverse effects of third-generation cephalosporins. J Antimicrob Chemother 1982; 10(Suppl C): 135-140. Ahmad N, Hashim R, Mohd Noor A. The in vitro antibiotic susceptibility of malaysian isolates of Burkholderia pseudomallei. Int J Microbiol 2013; 2013: 121845. Sarovich DS, Price EP, Von Schulze AT, Cook JM, Mayo M, Watson LM, et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS One 2012; 7(2): e30789. Jenney AWJ, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents 2001; 17(2): 109-113. Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob Chemother 2004; 54(6): 1134-1138. Wuthiekanun V, Amornchai P, Saiprom N, Chantratita N, Chierakul W, Koh GC, et al. Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in Northeast Thailand. Antimicrob Agents Chemother 2011; 55(11): 5388-5391. Behera B, Babu TP, Kamalesh A, Reddy G. Ceftazidime resistance in Burkholderia pseudomallei: First report from India. Asian Pac J Trop Med 2012; 5(4): 329-330. Blower RJ, Barksdale SM, van Hoek ML. Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Negl Trop Dis 2015; 9(7): e0003862. Dean SN, Bishop BM, Van HML. Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2011; 2: 128. Kampshoff F, Willcox MDP, Dutta D. A pilot study of the synergy between two antimicrobial peptides and two common antibiotics. Antibiotics (Basel) 2019; 8(2): E60. Dawson RM, Liu CQ. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol 2008; 34(2): 89-107. Jin P, Wang H, Liu W, Fan Y, Miao W. A new cyclic lipopeptide isolated from Bacillus amyloliquefaciens HAB-2 and safety evaluation. Pestic Biochem Physiol 2018; 147: 40-45. Boottanun P, Potisap C, Hurdle JG, Sermswan RW. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. Amb Express 2017; 7(1):16. Kang X, Fu Z, Rajaofera MJN, Li C, Zhang N, Liu L, et al. Whole-genome sequence of Burkholderia pseudomallei strain HNBP001, isolated from a melioidosis patient in Hainan, China. Microbiol Resour Announc 2019; 8(36): e00471-19. Liu L, Sun QH, Pei H, Chen CZ, Xiu H, Zhang N, et al. Multilocus sequence typing of Burkholderia pseudomallei collected in Hainan, China. Chin J Zoono 2019; 35(06): 514-517+524. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clini Infect Dis 2006; 43(3): 297-304. Fu QY, Chen CY, Wu J, Wu Q, Qin X, Qian SY, et al. Establishment and evaluation of real-time PCR for rapid and quantitative detection of Burkholderia pseudomallei. J Third Mil Med Univ 2015; 17: 1734-1738. Serra C, Bouharkat B, Tir Touil-Meddah A, Guénin S, Mullié C. MexXY multidrug efflux system is more frequently overexpressed in ciprofloxacin resistant french clinical isolates compared to hospital environment ones. Front Microbiol 2019; 10: 366. Cai S, Chen Y, Song D, Kong J, Wu Y, Lu H. Study on the resistance mechanism via outer membrane protein OprD2 and metal ß-lactamase expression in the cell wall of Pseudomonas aeruginosa. Exp Ther Med 2016; 12(5): 2869-2872. Kamjumphol W, Chareonsudjai P, Chareonsudjai S. Antibacterial activity of chitosan against Burkholderia pseudomallei. Microbiologyopen 2018; 7(1). Doi: 10.1002/mbo3.534 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-AAC) method. Methods 2001; 25(4): 402-408. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express 2013; 3(1): 2. Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van Bambeke F. Loss of activity of ceftazidime-avibactam due to Mex-AB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa, isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents 2018; 52(5): 697-701. Verchère A, Picard M, Broutin I. Functional investigation of the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Biophysic J 2013; 104(2): 286a. Van Duin D, Lok JJ, Earley M, Cober E, Richter SS, Perez F. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 2018; 66(2): 163-171. Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: Implications for treatment of melioidosis. Future Microbiol 2012; 7(12): 1389-1399. Quinn JP, Darzins A, Miyashiro D, Ripp S, Miller RV. Imipenem resistance in Pseudomonas aeruginosa PAO: Mapping of the OprD2 gene. Antimicrob Agents Chemother 1991; 35(4): 753-755. Dong F, Xu XW, Song WQ, Lü P, Yang YH, Shen XZ. Analysis of resistant genes of beta-lactam antibiotics from Pseudomonas aeruginosa in pediatric patients. Zhonghua Yi Xue Za Zhi 2008; 88(42): 3012-3015. Shen J, Pan Y, Fang Y. Role of the outer membrane protein OprD2 in carbapenem-resistance mechanisms of Pseudomonas aeruginosa. PLoS One 2015; 10(10): e0139995. Georges B, Conil JM, Dubouix A, Archambaud M, Bonnet E, Saivin S, et al. Risk of emergence of Pseudomonas aeruginosa resistance to ß-lactam antibiotics in intensive care units. Crit Care Med 2006; 34(6): 1636-1641. Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, et al. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Appl Environ Microb 2010; 76(24): 8126-8134. Wang J, Zhang X, Sun G, Wang Q, Lu L, Feng X, et al. Utility of multiple-locus variant-repeat analysis method for the outbreak of the Pseudomonas aeruginosa isolates. Clin Lab 2014; 60(7): 1217-1223. El-Badawy MF, Alrobaian MM, Shohayeb MM, Abdelwahab SF. Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: A genotypic study in Saudi Arabia. Infect Drug Resist 2019; 12: 915-923. Martín-Gutiérrez G, Rodríguez-Martínez JM, Pascual Á, Rodríguez-Beltrán J, Blázquez J. Plasmidic qnr genes confer clinical resistance to ciprofloxacin under urinary tract physiological conditions. Antimicrob Agents Chemother 2017; 61(4): e02615-e02616. Paiva MC, Reis MP, Costa PS, Dias MF, Bleicher L, Scholte LLS, et al. Identification of new bacteria harboring qnrS and aac(6')-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. Water Res 2017; 110: 27-37.
5. Analysis of comprehensive intervention effect of post-traumatic stress disorder in patients with acute hand injury
Chui QIAN ; Cunxian LYU ; Xingdong QIU ; Cunwang ZHENG
Chinese Journal of Primary Medicine and Pharmacy 2020;27(1):77-80
Objective:
To analyze the comprehensive intervention effect of post-traumatic stress disorder (PTSD) in patients with acute hand injury, and its correlation with hand function recovery.
Methods:
A total of 120 patients with hand trauma admitted to Wenzhou Hospital of Traditional Chinese Medicine from April 2016 to April 2018 were selected.The patients were randomly divided into observation group (60 cases) and control group (60 cases) according to the digital table.The observation group received routine treatment and comprehensive intervention.The control group was given routine treatment.The PDST scale (CAPS), depression self-rating scale (SDS) and Hamilton anxiety scale (HAMA) rating scale used by clinicians were used to assess the psychological status, depression and anxiety of patients with PTSD, and to evaluate the upper limb function of patients.
Results:
After intervention, the scores of CAPS, SDS and HAMA in the control group were (24.51±8.43)points, (50.61±7.59)points and (10.63±2.11)points, respectively, which were significantly higher than those in the observation group[(16.53±7.62)points, (40.26±4.18)points, (8.24±1.86)points](
6.Alprostadil the pneumoconiosis rheology and respiratory function of patients with pulmonary heart disease clinical research.
Chui-yun LUI ; Xiang-wen GONG ; Qian CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(9):694-696
Adult
;
Aged
;
Alprostadil
;
therapeutic use
;
Female
;
Hemorheology
;
Humans
;
Male
;
Middle Aged
;
Pneumoconiosis
;
blood
;
drug therapy
;
physiopathology
;
Respiratory Function Tests
7.Influence of nm23-H1 gene silence in K562 cell on its differentiation toward megakaryocyte.
Lin JIN ; Ge LIU ; Chuan-hai ZHANG ; Sheng XIONG ; Mei-ying ZHANG ; Qiu-ying LIU ; Chui-wen QIAN ; Yi-fei WANG
Chinese Journal of Hematology 2008;29(6):384-387
OBJECTIVETo construct a stable nm23-H1-knock-down cell model with K562 cell line and study its differentiation toward megakaryocyte.
METHODSEukaryotic expression vector pSilencer 4.1-CMV-sinm23 expressing siRNA targeting nm23-H1 was transfected into K562 cells with lipofectamine2000. Cells with stably nm23-H1 silence were screened out by G418. Real-time quantitative PCR, immunocytochemistry, western blot were used to confirm the nm23-H1-knock-down K562 model. Cell differentiation capacity was detected by NBT reduction assay. Surface antigen Gp IIb-IIIa (CD41) of knock-down cells treated with phorbol 12-myristate 13-acetate was analyzed by flow cytometry. Western blot was used to detect the ERK1/2 signal pathway after the stimulation of phorbol 12-myristate 13-acetate.
RESULTSEndogenous nm23-H1 was silenced by pSilencer 4.1-CMV-sinm23 and the silence efficiency was up to 75% and 70% in mRNA and protein levels respectively compared with the mock cells. Under phorbol 12-myristate 13-acetate treatment, the knock-down cells displayed a significantly increased differentiation ability toward megakaryocyte compared with control. The NBT reduction values were (0.31 +/- 0.07) and (0.23 +/- 0.05) respectively. Further results revealed that nm23-H1 gene regulating the megakaryocytic differentiation was due in part to the increased ERK1/2 phosphorylation.
CONCLUSIONSA stable nm23-H1-knock-down K562 cell model is successfully constructed. nm23-H1 involves in regulating the megakaryocytic differentiation of K562 cell line.
Cell Differentiation ; genetics ; Gene Knockdown Techniques ; Humans ; K562 Cells ; Megakaryocytes ; cytology ; NM23 Nucleoside Diphosphate Kinases ; genetics ; RNA Interference
8.Efficient purification of recombinant human NDPK-A in pilot-scale.
Sheng XIONG ; Chui-Wen QIAN ; Chao-Wan GUO ; Li HUANG ; Qiu-Ying LIU ; Mei-Ying ZHANG ; Yi-Fei WANG
Chinese Journal of Biotechnology 2007;23(3):508-513
To purify recombinant human nucleoside diphosphate kinase A (rhNDPK-A) efficiently in pilot scale, cells of rhNDPK-A producing E. coli were homogenized by high pressure under 4 degrees C, 950 Pa. The insoluble debris was removed by microfiltration and the soluble portion was concentrated by ultrafiltration. The resulted crude sample was loaded on DEAE-sepharose Fast Flow. The target fraction was collected and then load on Cibacron Blue 3GA Sepharose CL-4B. Eluted with buffer containing ATP from the AC column, rhNDPK-A was polished with ultrafiltration. The results showed that after homogenized 2 rounds, 1500g cells of E. coli brought crude sample containing 47.6g NDPK-A. Treated with microfiltration and ultrafiltration, 27.3g of NDPK-A were recovered from this bacteria homogenate. After 2-step purification with column chromatography and then polished with ultrafiltration, 17.2 g rhNDPK-A were collected with purity of 96.3%. The recovery of the whole purification process was 36.2%, and the productivity of rhNDPK-A was 1.15 g per 100 g wet cells. Comparing the recovery of each purification step, it was found that the recovery of polish is higher than that of affinity chromatography, which is higher than that of ion exchange chromatography. The limit step was the process of sample pretreatment among the 4 purification steps. Combine with the fermentation results reported before, it was deduced that the productivity of rhNDPK-A was 510 mg/L. In conclusion, an easily controlled purification condition with high yield provides material for the translation researches of NDPK; In addition, it was suggested the crucial step determine the recovery of non-secretive recombinant proteins might be the process of sample pretreatment, not be the process of column chromatography.
Chromatography, Affinity
;
Chromatography, Ion Exchange
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
genetics
;
Humans
;
NM23 Nucleoside Diphosphate Kinases
;
genetics
;
metabolism
;
Pilot Projects
;
Recombinant Proteins
;
isolation & purification
;
metabolism
;
Ultrafiltration
9.Analysis of the relationship between nm23-H1 gene and human chronic myeloblastic leukemia using siRNA.
Yu-Xia CHEN ; Mei-Ying ZHANG ; Sheng XIONG ; Chui-Wen QIAN ; Yi-Fei WANG
Chinese Journal of Biotechnology 2006;22(3):403-407
To investigate the relationship between nm23-H1 gene and human chronic myeloblastic leukemia we designed siRNAs which target nm23-H1 gene. According to the principles of designing siRNA, we selected three siRNAs and transfected them into K562 cells by lipofectamine2000. The expression levels of nm23-H1 mRNA were detected by reverse transcriptase polymerase chain reaction after transfection for 24 hours. The expression levels of nm23-H1 protein were assayed by immunocytochemical method after transfection for 48 hours. And after transfection for 24, 48 and 72 hours, cell proliferation was determined by MTT method. Among the three siRNAs, siNM526 can effectively inhibit the expression of nm23-H1 on mRNA and protein levels. The growth of K562 cells was suppressed after transfection of siNM526. These results suggest that low expression level of nm23-H1 in K562 cells inhibited cell proliferation, namely reduced malignant degree of them. Therefore nm23-H1 gene might be a potential target of leukemia treatment.
Cell Proliferation
;
Humans
;
K562 Cells
;
Leukemia, Erythroblastic, Acute
;
genetics
;
pathology
;
NM23 Nucleoside Diphosphate Kinases
;
biosynthesis
;
genetics
;
RNA Interference
;
RNA, Messenger
;
biosynthesis
;
genetics
;
RNA, Small Interfering
;
genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Transfection
10.Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro.
Chuan-hai ZHANG ; Yi-fei WANG ; Xin-jian LIU ; Jia-Hai LU ; Chui-wen QIAN ; Zhuo-yue WAN ; Xin-ge YAN ; Huan-ying ZHENG ; Mei-ying ZHANG ; Sheng XIONG ; Jiu-xiang LI ; Shu-yuan QI
Chinese Medical Journal 2005;118(6):493-496

Result Analysis
Print
Save
E-mail