1.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
2.Advantages,discomfort and challenges of clinical application of orthopedic hemostatic materials
Chuang LIU ; Shuo SHAN ; Tengbo YU ; Huan ZHOU ; Lei YANG
Chinese Journal of Tissue Engineering Research 2024;28(5):795-803
BACKGROUND:Bone wax is a filler that can be used for bone hemostasis.Although modification of bone wax formulations is attempted worldwide,its inertness is still the main challenge today.There is an urgent clinical need to develop novel orthopedic hemostatic materials with hemostasis,osteogenesis and antibacterial properties. OBJECTIVE:To review the development of orthopedic hemostatic materials including bone wax and its substitutes. METHODS:PubMed,Web of Science,WanFang,CNKI and VIP databases were searched for literature related to bone wax,hemostatic materials,and research progress of orthopedic hemostatic materials,and 136 articles were selected for inclusion in the review by reading the abstracts of the articles in the initial screening. RESULTS AND CONCLUSION:To replace traditional bone wax,researchers have developed various orthopedic hemostatic materials based on the needs of practical scenarios such as hemostasis and osteogenesis.However,relevant studies mostly focus on basic physical and chemical and performance tests,lack a systematic evaluation system,and lack sufficient reports of large animal experiments and clinical trials.Therefore,bone wax is still a recognized orthopedic hemostatic material at present.The fundamental reason is that the design of existing materials cannot timely meet the new needs of intraoperative hemostasis,postoperative osteogenesis and clinical practice.In the future,the structure,composition and function of existing hemostatic and osteogenic materials need to be integrated and redesigned to meet the increasing demand for hemostatic and osteogenic materials.
3.Determination of Isobutyl Chloroformate Residue in Agatroban by Derivatization-Gas Chromatography-Mass Spectrometry
Chong QIAN ; Bo-Kai MA ; Chuang NIU ; Shan-Shan LIU ; Wen-Wen HUANG ; Xin-Lei GOU ; Wei WANG ; Mei ZHANG ; Xue-Li CAO
Chinese Journal of Analytical Chemistry 2024;52(1):113-120
A derivatizaton method combined with gas chromatography-mass spectrometry(GC-MS)was established for detection of isobutyl chloroformate(IBCF)residue in active pharmaceutical ingredient of agatroban.The extraction and derivatization reagents,derivatization time,qualitative and quantitative ions were selected and optimized,respectively.The possible mechanism of derivatization and characteristic fragment ions fragmentation were speculated.The agatroban samples were dissolved and extracted by methanol,and the residual IBCF was derived with methanol to generate methyl isobutyl carbonate(MIBCB).After 24 h static derivatization at room temperature,IBCF was completely transformed into MIBCB,which could be used to indirectly detect IBCF accurately.The results showed that the linearity of this method was good in the range of 25-500 ng/mL(R2=0.9999).The limit of detection(LOD,S/N=3)was 0.75 μg/g,and the limit of quantification(LOQ,S/N=10)was 2.50 μg/g.Good recoveries(95.2%-97.8%)and relative standard deviations(RSDs)less than 3.1%(n=6)were obtained from agatroban samples at three spiked levels of IBCF(2.50,25.00,50.00 μg/g),which showed good accuracy of this method.Good precision of detection results was obtained by different laboratory technicians at different times,the mean value of spiked sample solution(25.00 μg/g)was 24.28 μg/g,and the RSD was 2.1%(n=12).The durability was good,minor changes of detection conditions had little effect on the results.Under the original condition and conditions with initial column temperature±5℃,heating rate±2℃/min,column flow rate±0.1 mL/min,the IBCF content of spiked sample solution(25.00 μg/g)was detected,the mean value of detection results was 24.16 μg/g,and the RSD was 2.2%(n=7).Eight batches of agatroban samples from two manufacturers were detected using the established method,and the results showed that no IBCF residue was detected in any of these samples.The agatroban samples could be dissolved by methanol,and then the IBCF residue could be simultaneously extracted and derived with methanol as well.This detection method had the advantages of simple operation,high sensitivity,low matrix effect and accurate quantification,which provided a new effective method for detection of IBCF residue in agatroban.
4.Construction of A Macro-evaluation Tool for Dampness Syndrome Animal Model in Traditional Chinese Medicine
Chuang LI ; Peng XU ; Ruimin TIAN ; Zhaorui CAO ; Mingjia LIU ; Lei ZHANG ; Zhaoyu LU ; Taohua LAN ; Xiaowan WANG ; Wei MAO
Journal of Traditional Chinese Medicine 2024;65(14):1449-1457
ObjectiveTo construct a macro-evaluation tool for dampness syndrome (DS) animal model, which will provide a basis for experimental research on dampness syndrome in traditional Chinese medicine (TCM). MethodsConceptual framework of this study was clarified through discussions within the core working group, and dimensions of the evaluation of the animal model of DS were identified according to TCM principles. We searched CNKI, Wanfang, VIP and SinoMed databases from the inception to June 30th, 2023, on experiments involving dampness syndrome animals to create a pool of items about DS animal models. The core items were selected and extracted for factor analysis and cluster analysis. An expert importance rating questionnaire was developed based on the results of the literature review, analyzing the distribution of item scores, importance averages, and coefficient of variation. Through a comprehensive analysis of literature, expert importance scoring, and specific expert opinions, items that did not meet anyone of the criteria of average importance rating ≥2.04, coefficient of variation ≤30%, or literature eva-luation frequency ≥2% were removed, thereafter, the macro-evaluation tool for DS animal model was preliminarily constructed. ResultsSpirit and body state, autonomic activity state, body surface characteristics, diet, urination and defecation, tongue manifestation, and motor behavior assessment were constructed as the seven dimensions in the evaluation of DS animal model. A total of 348 papers about animal experiments were included and analyzed, resulting in a saturated pool of 72 items, which was refined to 38 core items of DS animal models. Factor analysis obtained 16 common factors, which were further clustered into two categories, named dampness transforming from heat syndrome and dampness transforming from cold syndrome. The expert importance scoring showed that the Kendall harmony coefficient was 0.359 (P<0.05) indicating a high level of agreement, coordination and reliability among the experts. Notably, 50% or more of the experts considered the items thick and greasy tongue coating, unclean perianal area, loose stools, lethargy, unformed stools, and listless expression as very important. The median scores for all items were 2.04(1.73, 2.37), with a coefficient of variation ranging from 19.73% to 53.38%. After expert evaluation, the macro-evaluation tool for DS animal model in TCM with 33 items and corresponding criteria for assessing the formation of DS models was finally contructed. ConclusionThe Macro-evaluation tool for DS animal model in TCM is highly scientific, credible, and operable, and can be utilized in DS animal experiments after its characteristics are actually evaluated.
5.Research progress in analysis and detection techniques,toxicity mechanism,and detoxification countermeasures of Abrin
Lan XIAO ; Chuang WANG ; Jia LIU ; Luyao LIU ; Lei GUO ; Li TANG
Military Medical Sciences 2024;48(4):294-302
Abrin,the most lethal plant-derived toxin known today,has attracted widespread attention from both the International Chemical Weapon Convention and the Biological and Toxin Weapons Convention.There is an urgent demand for the development of efficient detection and detoxification countermeasures against Abrin to adress its potential threats to human health and public safety.This review,based on clustering analysis of literature and on knowledge of the structures of various subtypes of Abrin,provides an overview of the analysis and detection techniques,the mechanism of toxicity,and detoxification countermeasures against Abrin.It concludes with an examination of the challenges and emerging trends in this field.The main analysis and detection techniques of Abrin include affinity-based analysis,physico-chemical-based analysis,and activity-based detection techniques.The challenges and developments in this field are also outlined.There is a pressing need to establish sensitive,specific,and accurate methods of measurement that are tailored to the structure and activity of Abrin in order to precisely assess and mitigate the toxin threat.Unfortunately,no effective antidotes have been deployed so far,with medical treatments confined to symptomatic care.Research and development of neutralizing antibodies remain stands as the most promising strategy for counteracting Abrin intoxication.
6.Carthamus tinctorius L.extract ameliorates alcoholic liver disease by modulating PI3K/Akt/FoxO signaling pathway
Wen-Xuan WANG ; Xiang-Lei FU ; Man QI ; Fu-Rong FAN ; Fu-Rong ZHU ; Yuan-Chuang WANG ; Kai-Yue ZHANG ; Min LIU ; Sheng-Hui CHU
Chinese Pharmacological Bulletin 2024;40(6):1137-1145
Aim To investigate the effects of Cartham-us tinctorius L.extract(CTLE)on oxidative stress,lipid metabolism,and apoptosis levels of mice with al-cohol-induced liver injury and its mechanism of action.Methods The mouse model of alcohol-associated liver disease was established by chronic alcohol feeding and acute alcohol gavage.Mice were randomly divided into four groups.During the modeling period,the state changes of mice were observed every day,and their weight was recorded.At the end of modeling,blood and liver tissues were collected from each group of mice.The blood of mice was analyzed biochemically,and HE staining and Oil Red O staining were used to evaluate further the degree of pathological damage in the liver of mice.Quantitative real-time PCR(qPCR)and Western blot were applied to detect the mRNA and protein expression levels of p-PI3K,PI3K,p-Akt,Akt,p-mTOR,mTOR,p-FoxO1,FoxO1,p-FoxO3a,FoxO3a,p-FoxO4,FoxO4,BCL and BAX factors.Results Compared to the model group,the CTLE administration group showed improved hepatic patho-logical injury and reduced lipid deposition.The bio-chemical indexes in serum and liver,such as ALT,AST,TG,TC,and MDA levels were reduced,while GSH and SOD levels increased.Regulating the PI3K/Akt/FoxO pathway resulted in increased production of SOD,which reduced damage and apoptosis caused by reactive oxygen species(ROS).Conclusions CTLE can exert anti-oxidative stress and anti-apoptotic effects through the PI3K/Akt/FoxO pathway and attenuates alcoholic liver injury in mice,providing new ideas for the treatment of alcoholic liver disease and the develop-ment of related drugs.
7.Exploration and advance of key techniques in MALDI mass spectrometry imaging
Lu-yuan QIN ; Chuang WANG ; Bin XU ; Lei GUO ; Jian-wei XIE
Acta Pharmaceutica Sinica 2023;58(1):63-75
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a new imaging technique with label-free, rapid, and high throughput features. It has bloomed in the analysis on the spatial distribution of biomolecules such as drugs, metabolites, peptides and proteins on the tissue surface in virtue of providing high data throughput from non-targeted full analysis and high accuracy from targeted analysis. The acquisition of MSI signal response with high sensitivity, high spatial resolution, and good stability is directly depended on the appropriate sample preparation approaches, and flexible and various data processing tools will help the non-target data mining to meet the demands of visualization, spatial distribution and multiple index applications so as to reveal the scientific rules beneath the data. This review briefly summarizes the key advances in MALDI-MSI from aspects of sample preparation procedures, data processing and visualization. It also illustrates the characteristics, difficulties and probable solutions derived from these key techniques.
8.Analysis of genotypes and phenotypes of three children with Cornelia de Lange syndrome.
Lei ZHAO ; Qinghua ZHANG ; Bingbo ZHOU ; Chuang ZHANG ; Lei ZHENG ; Yupei WANG ; Shengju HAO ; Ling HUI
Chinese Journal of Medical Genetics 2023;40(1):7-11
OBJECTIVE:
To analyze the clinical phenotype and results of genetic testing in three children with Cornelia de Lange syndrome (CdLS).
METHODS:
Clinical data of the children and their parents were collected. Peripheral blood samples of the pedigrees were collected for next generation sequencing analysis.
RESULTS:
The main clinical manifestations of the three children have included growth delay, mental retardation, peculiar facies and other accompanying symptoms. Based on the criteria proposed by the International Diagnostic Consensus, all three children were suspected for CdLS. As revealed by whole exome sequencing, child 1 has harbored NIPBL gene c.5567_5569delGAA insTAT missense variant, child 2 has harbored SMC1A gene c.607A>G missense variant, and child 3 has harbored HDAC8 gene c.628+1G>A splicing variant. All of the variants were de novo in origin.
CONCLUSION
All of the children were diagnosed with CdLS due to pathogenic variants of the associated genes, among which the variants of NIPBL and HDAC8 genes were unreported previously. Above finding has enriched the spectrum of pathogenic variants underlying CdLS.
Humans
;
Cell Cycle Proteins/genetics*
;
De Lange Syndrome/diagnosis*
;
Genotype
;
Phenotype
;
Genetic Testing
;
Histone Deacetylases/genetics*
;
Repressor Proteins/genetics*
9.Breath-by-breath measurement of exhaled ammonia by acetone-modifier positive photoionization ion mobility spectrometry via online dilution and purging sampling
Lu WANG ; Dandan JIANG ; Lei HUA ; Chuang CHEN ; Dongming LI ; Weiguo WANG ; Yiqian XU ; Qimu YANG ; Haiyang LI ; Song LENG
Journal of Pharmaceutical Analysis 2023;13(4):412-420
Exhaled ammonia(NH3)is an essential noninvasive biomarker for disease diagnosis.In this study,an acetone-modifier positive photoionization ion mobility spectrometry(AM-PIMS)method was developed for accurate qualitative and quantitative analysis of exhaled NH3 with high selectivity and sensitivity.Acetone was introduced into the drift tube along with the drift gas as a modifier,and the characteristic NH3 product ion peak of(C3H6O)4NH4+(K0=1.45 cm2/V·s)was obtained through the ion-molecule reaction with acetone reactant ions(C3H6O)2H+(K0=1.87 cm2/V·s),which significantly increased the peak-to-peak resolution and improved the accuracy of exhaled NH3 qualitative identification.Moreover,the interference of high humidity and the memory effect of NH3 molecules were significantly reduced via online dilution and purging sampling,thus realizing breath-by-breath measurement.As a result,a wide quantitative range of 5.87-140.92 μmol/L with a response time of 40 ms was achieved,and the exhaled NH3 profile could be synchronized with the concentration curve of exhaled CO2.Finally,the analytical capacity of AM-PIMS was demonstrated by measuring the exhaled NH3 of healthy subjects,demon-strating its great potential for clinical disease diagnosis.
10.Diagnostic value of a combined serology-based model for minimal hepatic encephalopathy in patients with compensated cirrhosis
Shanghao LIU ; Hongmei ZU ; Yan HUANG ; Xiaoqing GUO ; Huiling XIANG ; Tong DANG ; Xiaoyan LI ; Zhaolan YAN ; Yajing LI ; Fei LIU ; Jia SUN ; Ruixin SONG ; Junqing YAN ; Qing YE ; Jing WANG ; Xianmei MENG ; Haiying WANG ; Zhenyu JIANG ; Lei HUANG ; Fanping MENG ; Guo ZHANG ; Wenjuan WANG ; Shaoqi YANG ; Shengjuan HU ; Jigang RUAN ; Chuang LEI ; Qinghai WANG ; Hongling TIAN ; Qi ZHENG ; Yiling LI ; Ningning WANG ; Huipeng CUI ; Yanmeng WANG ; Zhangshu QU ; Min YUAN ; Yijun LIU ; Ying CHEN ; Yuxiang XIA ; Yayuan LIU ; Ying LIU ; Suxuan QU ; Hong TAO ; Ruichun SHI ; Xiaoting YANG ; Dan JIN ; Dan SU ; Yongfeng YANG ; Wei YE ; Na LIU ; Rongyu TANG ; Quan ZHANG ; Qin LIU ; Gaoliang ZOU ; Ziyue LI ; Caiyan ZHAO ; Qian ZHAO ; Qingge ZHANG ; Huafang GAO ; Tao MENG ; Jie LI ; Weihua WU ; Jian WANG ; Chuanlong YANG ; Hui LYU ; Chuan LIU ; Fusheng WANG ; Junliang FU ; Xiaolong QI
Chinese Journal of Laboratory Medicine 2023;46(1):52-61
Objective:To investigate the diagnostic accuracy of serological indicators and evaluate the diagnostic value of a new established combined serological model on identifying the minimal hepatic encephalopathy (MHE) in patients with compensated cirrhosis.Methods:This prospective multicenter study enrolled 263 compensated cirrhotic patients from 23 hospitals in 15 provinces, autonomous regions and municipalities of China between October 2021 and August 2022. Clinical data and laboratory test results were collected, and the model for end-stage liver disease (MELD) score was calculated. Ammonia level was corrected to the upper limit of normal (AMM-ULN) by the baseline blood ammonia measurements/upper limit of the normal reference value. MHE was diagnosed by combined abnormal number connection test-A and abnormal digit symbol test as suggested by Guidelines on the management of hepatic encephalopathy in cirrhosis. The patients were randomly divided (7∶3) into training set ( n=185) and validation set ( n=78) based on caret package of R language. Logistic regression was used to establish a combined model of MHE diagnosis. The diagnostic performance was evaluated by the area under the curve (AUC) of receiver operating characteristic curve, Hosmer-Lemeshow test and calibration curve. The internal verification was carried out by the Bootstrap method ( n=200). AUC comparisons were achieved using the Delong test. Results:In the training set, prevalence of MHE was 37.8% (70/185). There were statistically significant differences in AMM-ULN, albumin, platelet, alkaline phosphatase, international normalized ratio, MELD score and education between non-MHE group and MHE group (all P<0.05). Multivariate Logistic regression analysis showed that AMM-ULN [odds ratio ( OR)=1.78, 95% confidence interval ( CI) 1.05-3.14, P=0.038] and MELD score ( OR=1.11, 95% CI 1.04-1.20, P=0.002) were independent risk factors for MHE, and the AUC for predicting MHE were 0.663, 0.625, respectively. Compared with the use of blood AMM-ULN and MELD score alone, the AUC of the combined model of AMM-ULN, MELD score and education exhibited better predictive performance in determining the presence of MHE was 0.755, the specificity and sensitivity was 85.2% and 55.7%, respectively. Hosmer-Lemeshow test and calibration curve showed that the model had good calibration ( P=0.733). The AUC for internal validation of the combined model for diagnosing MHE was 0.752. In the validation set, the AUC of the combined model for diagnosing MHE was 0.794, and Hosmer-Lemeshow test showed good calibration ( P=0.841). Conclusion:Use of the combined model including AMM-ULN, MELD score and education could improve the predictive efficiency of MHE among patients with compensated cirrhosis.

Result Analysis
Print
Save
E-mail