1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Root causes of quality changes in cultivated Chinese materia medica and countermeasures for high-quality production.
Chao-Geng LYU ; Chuan-Zhi KANG ; Ya-Li HE ; Zhi-Lai ZHAN ; Sheng WANG ; Xiu-Fu WAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(13):3529-3535
In order to support the implementation of the Opinions on Improving the Quality of Traditional Chinese Medicine and Promoting the High-Quality Development of the Traditional Chinese Medicine Industry and fundamentally promote the high-quality development of Chinese materia medica(CMM) industry, this article analyzed the quality and safety issues arising during the transition of CMM from wild harvesting to cultivation. Root causes of these issues were identified, including changes in the habitats of medicinal plants caused by inappropriate field cultivation patterns, excessive use of chemical inputs such as fertilizers and pesticides, and shortened cultivation periods due to rising economic costs. To address the above issues, the following countermeasures and suggestions were proposed to advance the high-quality development of CMM:(1) comprehensively adjust the cultivation patterns, vigorously promote ecological cultivation of CMM, and ensure production quality and safety of CMM from the source;(2) strengthen the breeding of high-quality, stress-resistant CMM varieties, improve cultivation techniques to reduce the use of fertilizers and pesticides, and improve the quality and efficiency of ecological cultivation of CMM;(3) systematically design the production, operation, and supervision models for ecological cultivation of CMM, carry out demonstrations of "high quality with fair price", and ensure the sustainable development of ecological cultivation of CMM.
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Plants, Medicinal/chemistry*
;
Plant Roots/chemistry*
;
China
;
Fertilizers/analysis*
;
Materia Medica/standards*
;
Medicine, Chinese Traditional/standards*
4.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
5.Clinical features and surgical treatment strategies of hip arthroplasty for unhealed old femoral intertrochanteric fractures.
Qing XIA ; Chuan-Wen LIU ; Yu-Cheng XIA ; Hui-Yang WANG ; Jin-Quan GUO
China Journal of Orthopaedics and Traumatology 2025;38(2):188-194
OBJECTIVE:
To explore the surgical method and clinical efficacy of hip arthroplasty in the treatment of old non-union femoral intertrochanteric fractures.
METHODS:
Fifteen unoperated patients suffering from old non-union femoral intertrochanteric fractures from Feburary 2013 to Feburary 2023 were treated with hip arthroplasty including 9 males and 6 females, aged 71 to 82 years old. Eleven cases detected deep venous thrombosis(DVT), 9 cases received lower vena cava filter implantation. The operation time, intraoperative blood loss, intraoperative and postoperative blood transfusion, postoperative hemoglobin content, procedure-related complications, and the range of motion of hip flexion, abduction motion were recorded. The degree of hip pain was evaluated using a visual analogue scale(VAS). The hip Harris scores were used to evaluated the clinical efficacy.
RESULTS:
All patients were followed up for 3 to 12 months. The intraoperative blood loss was 200 to 400 ml, intraoperative blood transfusion was 0 to 400 ml, and the operation time was 40 to 90 min. All 15 patients had different degrees of anemia after surgery, the 3 days postoperative hemoglobin was 72 to 97 g·L-1, and the postoperative transfusion volume was 0 to 400 ml. All patients had no periprosthetic infection, poor incision healing, lower limb deep vein thrombosis, and cerebral infarction. One case occurred in the early postoperative period, which disappeared from 4 to 5 days after operation, and there was no further revision at the last follow-up. The VAS was 6 to 7 points before operation and 2 to 4 points at latest follow-up;the hip Harris score was 2 to 13 points before operation and 73 to 84 points at latest follow-up.
CONCLUSION
The unoperated patients of old non-union femoral intertrochanteric fractures had significant clinical and imaging characteristics. Hip arthroplasty combined with or without femoral calcar reconstruction in the treatment of old non-union femoral intertrochanteric fractures had the advantages of relatively simple manipulation, rigid fixation, relatively safe operation, and relatively exact efficacy.
Humans
;
Male
;
Female
;
Aged
;
Hip Fractures/physiopathology*
;
Aged, 80 and over
;
Arthroplasty, Replacement, Hip/methods*
6.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the PAH gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the PAH gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for PAH hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
7.Shuangshi Tonglin Capsule Improves Prostate Fibrosis through Nrf2/TGF-β1 Signaling Pathways.
Zi-Qiang WANG ; Peng MAO ; Bao-An WANG ; Qi GUO ; Hang LIU ; Yong YUAN ; Chuan WANG ; Ji-Ping LIU ; Xing-Mei ZHU ; Hao WEI
Chinese journal of integrative medicine 2025;31(6):518-528
OBJECTIVE:
To investigate the effect and mechanism of Shuangshi Tonglin Capsules (SSTL) in the treatment of prostate fibrosis (PF).
METHODS:
Human prostate stromal cells (WPMY-1) were used for in vitro experiments to establish PF cell models induced with estradiol (E2). The cell proliferation, migration and clonogenic capacity were determined by cell counting kit-8, scratch assay, and crystal violet staining, respectively. Sprague-Dawley rats were used for in vivo experiments. The changes in histomorphology and organ index of rat prostate by SSTL were determined. Pathologic changes and collagen deposition changes in rat prostate were observed by haematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay kits were used to determine changes in rat PF markers fibroblast growth factor-23 (FGF-23), E2 and prostate specific antigen (PSA). Mechanistically, changes in oxidative stress indicators by SSTL were determined in WPMY-1 cells and PF rats. Then the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and transforming growth factor-β1 (TGF-β1)/Smad pathway-related proteins as well as Nrf2 and TGF-β1 mRNA were further detected by Western blot or quantitative real-time polymerase chain reaction both in vivo and in vitro.
RESULTS:
In the efficacy study, SSTL significantly reduced the proliferation, migration, and clonogenic ability of cells, improved the morphology of the glandular tissue, significantly reduced the prostate index, reduced glandular fibrous tissue and collagen deposition, and resulted in a significant decrease in the levels of FGF-23, E2 and PSA (P<0.01 or P<0.05). In the mechanistic study, SSTL ameliorated oxidative stress by significantly increasing superoxide dismutase and glutathione peroxidase levels and decreasing malondialdehyde level in WPMY-1 cells and rats (P<0.01 or P<0.05). SSTL significantly elevated the expressions of Nrf2, HO-1, NAD(P)H quinone oxidoreductase 1 (NQO-1), and Smad7 proteins in both cells and rats, and significantly decreased the expressions of TGF-β1, collagen I, α-smooth muscle actin and Smad4 proteins (P<0.01 or P<0.05). SSTL also elevated the content of Nrf2 mRNA and decreased the content of TGF-β1 mRNA in cells and rats (P<0.01 or P<0.05). The Nrf2 inhibitor ML385 was added in in vitro experiments to further validate the pathway relevance.
CONCLUSION
SSTL was effective in improving PF in vivo and in vitro, and its mechanism of action may function through the Nrf2/TGF-β1 signaling pathway.
Male
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Fibrosis
;
Prostate/drug effects*
;
Cell Proliferation/drug effects*
;
Capsules
;
Cell Movement/drug effects*
;
Oxidative Stress/drug effects*
;
Rats
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Development goals and strategies of ecological agriculture of Chinese materia medica.
Chuan-Zhi KANG ; Si-Qi LIU ; Bang-Xing HAN ; Tao ZHOU ; Xiao WANG ; Da-Hui LIU ; Ye YANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(1):42-47
This paper aims to contribute to guaranteeing the stable development and enhancing the understanding of ecological agriculture of Chinese materia medica so that the national strategy and industrial demand can be better served. It first introduces current traditional Chinese medicine(TCM)policy and industrial development status from five aspects, including policy guarantee, theoretical support, technological innovation, standardization system, and brand influence. Then, the paper analyzes the development dilemma of TCM agriculture in production and quality increase and ecological environment protection. It also proposes the development goals of ecological agriculture of Chinese materia medica that meet the current industrial development demand, which are reducing chemical fertilizers, pesticides, and carbon emissions, improving quality, increasing efficiency, and protecting ecological environment. In addition, the new development goals are interpreted through case studies. Finally, this paper proposes four development strategies for ecological agriculture of Chinese materia medica: conducting research on the pattern and spatial and temporal variations of nationwide TCM production areas; studying the internal and external ecological memories of medicinal plant growth from the perspectives of genetic variations and environmental adaptation variations and elucidating their contributions to the formation of quality; carrying out selection and breeding of stress-resistant varieties for ecological agriculture of Chinese materia medica, the optimization of key technologies for soil improvement and restoration and green prevention and control against diseases and pests, and the improvement of quality; carrying out research on the quality assurance and value realization of ecological products made from TCM. This research can provide guidance for policy formulation, theoretical development of the discipline, and the enhancement of industrial technology for ecological agriculture of Chinese materia medica.
Agriculture/methods*
;
China
;
Drugs, Chinese Herbal
;
Plants, Medicinal/chemistry*
;
Ecosystem
;
Materia Medica
;
Medicine, Chinese Traditional

Result Analysis
Print
Save
E-mail