1.Research advances in telomere-telomerase in neurodegenerative diseases
Journal of Apoplexy and Nervous Diseases 2024;41(2):169-174
Previous studies mainly used β-amyloid and α-synuclein as the biomarkers for the diagnosis of neurodegenerative diseases. In recent years,studies have shown that telomeres at the end of chromosome can be used as an index to measure the degree of biological aging,and telomere length and telomerase activity may also be used as the blood markers to evaluate the risk,progression,and poor prognosis of neurodegenerative diseases in the elderly;however,there is still a lack of consistency between the research findings in China and globally. Understanding the role of telomere-related biomarkers in age-related diseases can help clinicians learn more about the mechanism of disease development and progression. This article reviews the latest research advances in the telomere-telomerase system in neurodegenerative diseases,in order to introduce the influence of telomere length and telomerase activity on neurodegenerative diseases and their potential mechanisms of action.
Telomere
;
Telomerase
;
Neurodegenerative Diseases
;
Alzheimer Disease
;
Parkinson Disease
2.Interaction of polycyclic aromatic hydrocarbon DNA adducts and telomere length on missed abortion.
Mei HAN ; Sha LIU ; Jing Ru JI ; Yan Fei WU ; Ke Wei CHANG ; Jia Yu ZHANG ; Jun Ni WEI
Chinese Journal of Preventive Medicine 2023;57(2):193-199
Objective: To analyze the contribution and interaction of polycyclic aromatic hydrocarbons (PAH)-DNA adducts and changes of telomere length (TL) on missed abortion. Methods: From March to December 2019, patients with missed abortion in the First Hospital of Shanxi Medical University and pregnant women with normal pregnancy but voluntary abortion in the same department during the same period were selected and divided into a case group and a control group. Questionnaire was used to investigate the general situation and the pregnancy situation of the subjects. The abortion villi were collected and the content of PAH-DNA adducts and TL was detected. Logistic regression model was used to analyze the associated factors of missed abortion. R epiR package and Mediation package were used to analyze the effect and relationship between PAH-DNA adducts and TL on missed abortion. Results: The age of the subjects was(29.92±5.69)years old. The M(Q1,Q3)of PAH-DNA adducts was 453.75(404.61, 504.72) pg/ml. The M(Q1,Q3)of TL was 1.21(0.77, 1.72). The content of PAH-DNA adducts in the case group was higher than that in the control group (Z=-2.10, P=0.036), while the TL was lower than that in the control group (Z=-4.05, P<0.001). Multivariate logistic regression showed that low, medium and high levels of PAH-DNA adducts (OR=3.17,95%CI:1.41-7.14;OR=2.85,95%CI:1.25-6.52;OR=2.46,95%CI:1.07-5.64), and long, medium and short levels of TL (OR=2.50,95%CI:1.11-5.63;OR=3.32,95%CI:1.45-7.56;OR=3.22,95%CI:1.42-7.26) were all risk factors for missed abortion. The medium level of PAH-DNA adducts had a 2.76-fold higher risk of shortened TL than those with the lowest level, and no mediating role of TL was found. The stratified analysis showed that when the TL level was longer (>1.21), the low and high levels of PAH-DNA adducts were associated with missed abortion (all P<0.05); when the TL level was shorter (<1.21), the medium level of PAH-DNA adducts was associated with abortion (P=0.025). At lower levels of PAH-DNA adducts, no effect of TL on missed abortion was observed, while, at higher levels, TL was strongly associated with missed abortion (OR=7.50,95%CI:1.95-28.82;OR=6.04,95%CI:1.54-23.65;OR=9.05,95%CI:2.34-35.04). The interaction analysis found that the AP was 0.72 (95%CI: 0.46-0.99), and the SI was 5.21 (95%CI: 2.30-11.77). Conclusion: The high level of PAH-DNA adducts and shortened TL may increase the risk of missed abortion, and there may be a positive additive interaction between the two factors on missed abortion.
Humans
;
Female
;
Pregnancy
;
Young Adult
;
Adult
;
DNA Adducts
;
Abortion, Missed/chemically induced*
;
Polycyclic Aromatic Hydrocarbons
;
Abortion, Spontaneous/chemically induced*
;
Telomere/chemistry*
3.Effects and mechanism of p53 gene deletion on energy metabolism during the pluripotent transformation of spermatogonial stem cells.
Hong-Yang LIU ; Rui WEI ; Xiao-Xiao LI ; Kang ZOU
Acta Physiologica Sinica 2023;75(1):17-26
Previous studies have shown that long-term spermatogonial stem cells (SSCs) have the potential to spontaneously transform into pluripotent stem cells, which is speculated to be related to the tumorigenesis of testicular germ cells, especially when p53 is deficient in SSCs which shows a significant increase in the spontaneous transformation efficiency. Energy metabolism has been proved to be strongly associated with the maintenance and acquisition of pluripotency. Recently, we compared the difference in chromatin accessibility and gene expression profiles between wild-type (p53+/+) and p53 deficient (p53-/-) mouse SSCs using the Assay for Targeting Accessible-Chromatin with high-throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) techniques, and revealed that SMAD3 is a key transcription factor in the transformation of SSCs into pluripotent cells. In addition, we also observed significant changes in the expression levels of many genes related to energy metabolism after p53 deletion. To further reveal the role of p53 in the regulation of pluripotency and energy metabolism, this paper explored the effects and mechanism of p53 deletion on energy metabolism during the pluripotent transformation of SSCs. The results of ATAC-seq and RNA-seq from p53+/+ and p53-/- SSCs revealed that gene chromatin accessibility related to positive regulation of glycolysis and electron transfer and ATP synthesis was increased, and the transcription levels of genes encoding key glycolytic enzymes and regulating electron transport-related enzymes were markedly increased. Furthermore, transcription factors SMAD3 and SMAD4 promoted glycolysis and energy homeostasis by binding to the chromatin of the Prkag2 gene which encodes the AMPK subunit. These results suggest that p53 deficiency activates the key enzyme genes of glycolysis in SSCs and enhances the chromatin accessibility of genes associated with glycolysis activation to improve glycolysis activity and promote transformation to pluripotency. Moreover, SMAD3/SMAD4-mediated transcription of the Prkag2 gene ensures the energy demand of cells in the process of pluripotency transformation and maintains cell energy homeostasis by promoting AMPK activity. These results shed light on the importance of the crosstalk between energy metabolism and stem cell pluripotency transformation, which might be helpful for clinical research of gonadal tumors.
Animals
;
Mice
;
AMP-Activated Protein Kinases
;
Chromatin
;
Energy Metabolism
;
Gene Deletion
;
Stem Cells
;
Tumor Suppressor Protein p53/genetics*
;
Spermatogonia/cytology*
;
Male
4.Prenatal diagnosis and genetic analysis of two cases of Turner syndrome due to isodicentric Xp11.22.
Lingxi WANG ; Han KANG ; Yu HU ; Yong WU
Chinese Journal of Medical Genetics 2023;40(3):368-373
OBJECTIVE:
To explore the genetic characteristics of idic(X)(p11.22) in Turner syndrome (TS).
METHODS:
Two fetuses suspected for sex chromosome abnormalities or ultrasound abnormalities were selected from Chengdu Women's and Children's Central Hospital in October 2020 and June 2020, and amniotic fluid samples were collected for G-banded chromosomal karyotyping analysis, chromosomal microarray analysis (CMA), and fluorescence in situ hybridization (FISH).
RESULTS:
The two fetuses were respectively found to have a karyotype of 45,X[47]/46,X,psu idic(X)(p11.2)[53] and 46,X,psu idic(X)(p11.2). CMA found that both had deletions in the Xp22.33p11.22 region and duplications in the p11.22q28 region. FISH showed that the centromeres in both fetuses had located on an isochromosome.
CONCLUSION
The combination of karyotyping analysis, FISH, and CMA is useful for the delineation of complex structural chromosomal aberrations. High-resolution CMA can accurately identify chromosomal breakpoints, which can provide a clue for elucidating the mechanism of chromosomal breakage and rearrangement.
Female
;
Pregnancy
;
Humans
;
Turner Syndrome/genetics*
;
In Situ Hybridization, Fluorescence
;
Sex Chromosome Aberrations
;
Centromere
;
Prenatal Diagnosis
5.Recent advances in prostate cancer: WNT signaling, chromatin regulation, and transcriptional coregulators.
Sayuri TAKAHASHI ; Ichiro TAKADA
Asian Journal of Andrology 2023;25(2):158-165
Prostate cancer is one of the most common diseases in men worldwide. Surgery, radiation therapy, and hormonal therapy are effective treatments for early-stage prostate cancer. However, the development of castration-resistant prostate cancer has increased the mortality rate of prostate cancer. To develop novel drugs for castration-resistant prostate cancer, the molecular mechanisms of prostate cancer progression must be elucidated. Among the signaling pathways regulating prostate cancer development, recent studies have revealed the importance of noncanonical wingless-type MMTV integration site family (WNT) signaling pathways, mainly that involving WNT5A, in prostate cancer progression and metastasis; however, its role remains controversial. Moreover, chromatin remodelers such as the switch/sucrose nonfermentable (SWI/SNF) complex and chromodomain helicase DNA-binding proteins 1 also play important roles in prostate cancer progression through genome-wide gene expression changes. Here, we review the roles of noncanonical WNT signaling pathways, chromatin remodelers, and epigenetic enzymes in the development and progression of prostate cancer.
Male
;
Humans
;
Wnt Signaling Pathway
;
Chromatin
;
Prostatic Neoplasms, Castration-Resistant
;
Chromatin Assembly and Disassembly
6.Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice.
Yu QU ; Nan ZHOU ; Xia ZHANG ; Yan LI ; Xu-Feng XU
Neuroscience Bulletin 2023;39(7):1087-1104
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Mice
;
Animals
;
Memory
;
Chromatin Assembly and Disassembly
;
Hippocampus/metabolism*
;
Transcription Factors/metabolism*
;
Chromatin/metabolism*
;
Metabolic Networks and Pathways
7.The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development.
Sebastian GEHLEN-BREITBACH ; Theresa SCHMID ; Franziska FRÖB ; Gabriele RODRIAN ; Matthias WEIDER ; Michael WEGNER ; Lina GÖLZ
International Journal of Oral Science 2023;15(1):16-16
The cranial neural crest plays a fundamental role in orofacial development and morphogenesis. Accordingly, mutations with impact on the cranial neural crest and its development lead to orofacial malformations such as cleft lip and palate. As a pluripotent and dynamic cell population, the cranial neural crest undergoes vast transcriptional and epigenomic alterations throughout the formation of facial structures pointing to an essential role of factors regulating chromatin state or transcription levels. Using CRISPR/Cas9-guided genome editing and conditional mutagenesis in the mouse, we here show that inactivation of Kat5 or Ep400 as the two essential enzymatic subunits of the Tip60/Ep400 chromatin remodeling complex severely affects carbohydrate and amino acid metabolism in cranial neural crest cells. The resulting decrease in protein synthesis, proliferation and survival leads to a drastic reduction of cranial neural crest cells early in fetal development and a loss of most facial structures in the absence of either protein. Following heterozygous loss of Kat5 in neural crest cells palatogenesis was impaired. These findings point to a decisive role of the Tip60/Ep400 chromatin remodeling complex in facial morphogenesis and lead us to conclude that the orofacial clefting observed in patients with heterozygous KAT5 missense mutations is at least in part due to disturbances in the cranial neural crest.
Animals
;
Mice
;
Chromatin Assembly and Disassembly
;
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
DNA Helicases/metabolism*
;
DNA-Binding Proteins
;
Neural Crest/metabolism*
;
Skull
;
Transcription Factors/metabolism*
8.The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications.
Yanjing LI ; Kexue GE ; Tingting LI ; Run CAI ; Yong CHEN
Protein & Cell 2023;14(3):165-179
Histone lysine methyltransferases (HKMTs) deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression. The structures and functions of HKMTs have been extensively investigated in recent decades, significantly advancing our understanding of the dynamic regulation of histone methylation. Here, we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes (H3K4, H3K27, H3K36, H3K79, and H4K20 methyltransferases), with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs. These structural studies inform HKMTs' roles in tumorigenesis and provide the foundations for developing new therapeutic approaches targeting HKMTs in cancers.
Nucleosomes
;
Histones/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Lysine/metabolism*
;
Methyltransferases/metabolism*
;
Methylation
9.Spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium.
Ji DONG ; Xinglong WU ; Xin ZHOU ; Yuan GAO ; Changliang WANG ; Wendong WANG ; Weiya HE ; Jingyun LI ; Wenjun DENG ; Jiayu LIAO ; Xiaotian WU ; Yongqu LU ; Antony K CHEN ; Lu WEN ; Wei FU ; Fuchou TANG
Protein & Cell 2023;14(6):433-447
Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.
Humans
;
Epigenesis, Genetic
;
Gastric Mucosa/metabolism*
;
Chromatin/metabolism*
;
Stem Cells
;
Epithelium/metabolism*
;
Fatty Acid-Binding Proteins/metabolism*

Result Analysis
Print
Save
E-mail