1.High performance liquid chromatography analysis of the active ingredients and evaluation of anti-caries potential of Thai propolis extracts
John Erick B. Quiniquini ; Waraporn Putalun ; Waranuch Pitiphat ; Nutthapong Kantrong ; Suttichai Krisanaprakornkit ; Pattama Chailertvanitkul
Acta Medica Philippina 2025;59(10):110-118
OBJECTIVE
This study aimed to determine and quantify the presence of the active components in Thai propolis extracts using high performance liquid chromatography (HPLC). Moreover, the anti-caries potential of Thai propolis extract and its active ingredients were tested.
METHODSFifty milligrams of Thai propolis were extracted using either 100%, 90%, 80%, or 70% ethanol and subsequently analyzed using HPLC with a mobile phase gradient system of 10-100% acetonitrile in 0.05% aqueous ortho-phosphoric acid, flow rate of 0.8 mL/min, and detection wavelength of 280 nm. Varying concentrations of Thai propolis extracts as well as four active ingredients were subjected to agar well diffusion test against the growth of Streptococcus mutans (S. mutans) or Lactobacillus caseii (L. caseii).
RESULTSThe concentrations of the four active ingredients: vicenin-2, vitexin, apigenin, and cinnamic acid, were significantly affected by ethanolic concentrations. The chromatographic peaks of all active ingredients from 70% and 80% ethanolic extracts appeared more defined, as compared to those which used higher concentrations of ethanol for extraction. Except for the absolute ethanolic extract, all of the examined propolis extracts, as well as its active ingredients inhibited both S. mutans and L. caseii.
CONCLUSIONThai propolis extracts contain vicenin-2, vitexin, apigenin, and cinnamic acid as part of its active ingredients. These were found to be significantly affected by the increase in ethanol during its extraction. The presence of these active ingredients might have contributed to the anti-caries potential of Thai propolis extracts.
Flavonoids ; Chromatography, High Pressure Liquid
2.RP-HPLC method for rhein quantification in Cassia fistula L. (Fabaceae) leaves
Acta Medica Philippina 2024;58(Early Access 2024):1-7
Objectives:
The aim of this study is to establish a Reversed Phase – High Performance Liquid Chromatographic
(RP-HPLC) method for the quantification of Rhein from Cassia fistula L. leaves.
Methods:
A Shimadzu system equipped with a C18 Column (150 x 4.6 mm, 5 μm) with an isocratic elution of
Acetonitrile (solvent A) and 0.1% trifluoroacetic acid aqueous solution (solvent B) (Merck, 1.08178.0050) with a
55:45 ratio, respectively and a flow rate of 1.0 mL/min and sample injection of 10 μL detection was done at 230 nm. Standard solution of Rhein (Chengdu Biopurify) was prepared for method development. This study was validated using the guidelines set under “ICH Topic Q2 R2 or the Validation of Analytical Procedures”. Procedures for linearity, precision, accuracy, limit of detection, and limit of quantitation were performed.
Results:
The retention time of Rhein standard was determined at 5.10 minutes. LOD and LOQ were determined to be 1.278 mcg/mL and 3.872 mcg/mL, respectively with good linearity (R2 ≥0.996) with a linear range of 2.5-20 ug/mL of the Rhein standard. The accuracy of the method was determined based on % recovery method and ranged from 94.75%-100.32% (intraday, n=3) with %RSD of 0.71. The intraday precision %RSD was 2.92 (n=6) while interday precision %RSD was 3.75 (n=3). The method was able to check the Rhein quantity among 10 samples of Cassia fistula L. leaves from different locations in the Philippines.
Conclusion
The method was found to be sensitive and accurate for the quantification of Rhein. The method was found to be useful for the quantification of the amount of Rhein and can be used as a Quality Control tool for the assessment of Cassia fistula.
Cassia
;
Chromatography, High Pressure Liquid
3.RP-HPLC method for rhein quantification in Cassia fistula L. (Fabaceae) leaves
Acta Medica Philippina 2024;58(23):97-103
OBJECTIVES
The aim of this study is to establish a Reversed Phase – High Performance Liquid Chromatographic (RP-HPLC) method for the quantification of Rhein from Cassia fistula L. leaves.
METHODSA Shimadzu system equipped with a C18 Column (150 x 4.6 mm, 5 μm) with an isocratic elution of Acetonitrile (solvent A) and 0.1% trifluoroacetic acid aqueous solution (solvent B) (Merck, 1.08178.0050) with a 55:45 ratio, respectively and a flow rate of 1.0 mL/min and sample injection of 10 μL detection was done at 230 nm. Standard solution of Rhein (Chengdu Biopurify) was prepared for method development. This study was validated using the guidelines set under “ICH Topic Q2 R2 or the Validation of Analytical Procedures”. Procedures for linearity, precision, accuracy, limit of detection, and limit of quantitation were performed.
RESULTSThe retention time of Rhein standard was determined at 5.10 minutes. LOD and LOQ were determined to be 1.278 mcg/mL and 3.872 mcg/mL, respectively with good linearity (R2 ≥0.996) with a linear range of 2.5-20 ug/mL of the Rhein standard. The accuracy of the method was determined based on % recovery method and ranged from 94.75%-100.32% (intraday, n=3) with %RSD of 0.71. The intraday precision %RSD was 2.92 (n=6) while interday precision %RSD was 3.75 (n=3). The method was able to check the Rhein quantity among 10 samples of Cassia fistula L. leaves from different locations in the Philippines.
CONCLUSIONThe method was found to be sensitive and accurate for the quantification of Rhein. The method was found to be useful for the quantification of the amount of Rhein and can be used as a Quality Control tool for the assessment of Cassia fistula.
Cassia ; Chromatography, High Pressure Liquid
4.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
Ginger
;
Trees
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids
;
Lignans/analysis*
5.Comparison of HPLC fingerprints and determination of main components of Viticis Fructus from different species.
Xiao-Yun YANG ; Pei-Yun GAO ; Xiao-Xu CHEN ; Li-Xia WANG ; Tong JIANG ; Tong WU ; Ying-Ying CHEN ; Chun-Yu YUE ; Hong-Wei WU ; Li-Ying TANG ; Zhu-Ju WANG
China Journal of Chinese Materia Medica 2023;48(9):2471-2479
In order to comprehensively evaluate the quality of Viticis Fructus, this study established HPLC fingerprints and evaluated the quality of 24 batches of Viticis Fructus samples from different species by similarity evaluation and multivariate statistical analysis(PCA, HCA, PLS-DA). On this basis, an HPLC method was established to compare the content differences of the main components, including casticin, agnuside, homoorientin, and p-hydroxybenzoic acid. The analysis was performed on the chromatographic column(Waters Symmetry C_(18)) with a gradient mobile phase of acetonitrile(A)-0.05% phosphoric acid solution(B) at the flow rate of 1 mL·min~(-1) and detection wavelength of 258 nm. The column temperature was 30 ℃ and the injection volume was 10 μL. The HPLC fingerprint of 24 batches of Viticis Fructus samples was established with 21 common peaks, and nine peaks were identified. Similarity analysis was carried out based on chromatographic data of 24 batches of chromatographic data of Viticis Fructus, and the results showed that except for DYMJ-16, the similarity of Vitex trifolia var. simplicifolia was ≥0.900, while that of V. trifolia was ≤0.864. In addition, the similarity analysis of two different species showed that the similarity of 16 batches of V. trifolia var. simplicifolia was 0.894-0.997 and that of the eight batches of V. trifolia was between 0.990 and 0.997. The results showed that the similarity of fingerprints of these two species was different, but the similarity between the same species was good. The results of the three multivariate statistical analyses were consistent, which could distinguish the two different species. The VIP analysis results of PLS-DA showed that casticin and agnuside contributed the most to the distinction. The content determination results showed that there was no significant difference in the content of homoorientin and p-hydroxybenzoic acid in Viticis Fructus from different species, but the content of casticin and agnuside was significantly different in different species(P<0.01). The content of casticin was higher in V. trifolia var. simplicifolia, while agnuside was higher in V. trifolia. The findings of this study show that there are differences in fingerprint similarity and component content of Viticis Fructus from different species, which can provide references for the in-depth study of the quality and clinical application of Viticis Fructus.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Fruit/chemistry*
;
Vitex/chemistry*
6.Metabolomics study of Berberidis Radix in intervening ulcerative colitis based on UPLC-Q-TOF-MS.
Xue-Li HU ; Chang-Yuan ZHOU ; Rui XU ; Hong LI ; Bao YANG ; Jian LONG ; Xing TU ; Juan NIE ; Ke-Yun LIU ; Ze-Hua HU
China Journal of Chinese Materia Medica 2023;48(9):2490-2499
The effect of Tujia medicine Berberidis Radix on endogenous metabolites in the serum and feces of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) was analyzed by metabolomics technology to explore the metabolic pathway and underlying mechanism of Berberidis Radix in the intervention of UC. The UC model was induced in mice by DSS. Body weight, disease activity index(DAI), and colon length were recorded. The levels of tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10) in colon tissues were determined by ELISA. The levels of endogenous metabolites in the serum and feces were detected by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites. The potential metabolic pathways were analyzed by MetaboAnalyst 5.0. The results showed that Berberidis Radix could significantly improve the symptoms of UC mice and increase the level of the anti-inflammatory factor IL-10. A total of 56 and 43 differential metabolites were identified in the serum and feces, respectively, belonging to lipids, amino acids, fatty acids, etc. After the intervention by Berberidis Radix, the metabolic disorder gradually recovered. The involved metabolic pathways included biosynthesis of phenylalanine, tyrosine, and tryptophan, linoleic acid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. Berberidis Radix can alleviate the symptoms of mice with DSS-induced UC, and the mechanism may be closely related to the re-gulation of lipid metabolism, amino acid metabolism, and energy metabolism.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Interleukin-10
;
Metabolomics/methods*
;
Chromatography, High Pressure Liquid
7.Application of high-speed counter current chromatography in extraction and separation of alkaloids in natural products.
Hao-Hao GUO ; Jing WANG ; Yuan CHEN ; Xiu-Lan XIN ; Yu-Feng LIU
China Journal of Chinese Materia Medica 2023;48(8):1989-1999
Alkaloids, widespread in plants, have a series of pharmacological activities and have been widely used to treat various diseases. Because alkaloids are usually presented in multicomponent mixtures and are deeply low in content, they are very difficult to extract and separate by traditional methods. High-speed counter current chromatography(HSCCC) is a kind of liquid-liquid chromatography without solid support phase, which has the advantages of large injection volume, low cost, and no irreversible adsorption. Compared with the traditional methods of extraction and separation of alkaloids, HSCCC can ensure the separation of many different alkaloids at one time, with a high recovery and large amount. In this paper, the advantages and disadvantages of HSCCC compared with traditional separation methods were discussed and the solvent system and elution mode of HSCCC used to separate alkaloids in recent years were summarized by referring to the relevant literature to provide some references for the separation of alkaloids by HSCCC.
Biological Products
;
Countercurrent Distribution/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids/analysis*
;
Solvents/chemistry*
8.Separation, characterization and anti-psoriasis effect of self-assembled nanoparticles from Shaoyao Gancao Decoction.
Zhi-Jian QIN ; Qiao YAN ; Ling-Yu HANG ; Xiao-Han TANG ; Fang-Qin LI ; Yu-Ye XUE ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2023;48(8):2116-2125
This study aims to separate and characterize self-assembled nanoparticles(SAN) from Shaoyao Gancao Decoction(SGD) and determine the content of active compounds. Further, we aimed to observe the therapeutic effect of SGD-SAN on imiquimod-induced psoriasis in mice. The separation of SGD was performed by dialysis, and the separation process was optimized by single factor experiment. The SGD-SAN isolated under the optimal process was characterized, and the content of gallic acid, albiflorin, paeoniflorin, liquiritin, isoliquiritin apioside, isoliquiritin, and glycyrrhizic acid in each part of SGD was determined by HPLC. In the animal experiment, mice were assigned into a normal group, a model group, a methotrexate group(0.001 g·kg~(-1)), and SGD, SGD sediment, SGD dialysate, and SGD-SAN groups of different doses(1, 2, and 4 g·kg~(-1)) respectively. The psoriasis grade of mice was evaluated based on the pathological changes of skin lesions, the content of inflammatory cytokines, organ index and other indicators. The results showed that SAN obtained by centrifugation at 13 000 r·min~(-1) for 30 min was stable after dialysis for 4 times, which were uniform spherical nanoparticles with the particle size of(164.43±1.34) nm, the polydispersity index of(0.28±0.05), and the Zeta potential of(-12.35±0.80) mV. The active compound content accounted for more than 70% of SGD. Compared with the model group, SAN and SGD decreased the skin lesion score, spleen index, and inflammatory cytokine levels(P<0.05 or P<0.01) and alleviated the skin thickening and infiltration of inflammatory cells. However, the sediment group and the dialysate group had no obvious effect. SGD showed a good therapeutic effect on imiquimod-induced psoriasis in mice, and SAN demonstrated the effect equivalent to SGD in a dose-dependent manner. Therefore, we conclude that the SAN formed during decocting is the main active form of SGD, which can lower the levels of inflammatory cytokines, promote the normal differentiation of keratinocytes, and reduce the infiltration of inflammatory cells in the treatment of psoriasis lesions in mice.
Mice
;
Animals
;
Imiquimod
;
Drugs, Chinese Herbal/pharmacology*
;
Glycyrrhizic Acid
;
Chromatography, High Pressure Liquid/methods*
9.Component identification and analysis in vivo of Sanhan Huashi formula.
Xu ZHANG ; Yan-Nan KOU ; Chen-Si YAO ; Yan-Yan ZHOU ; Chun-Ying WANG ; Qiao WANG ; Shu-Yi FENG ; Wei-Hao WANG ; Bin YANG ; Min LI
China Journal of Chinese Materia Medica 2023;48(8):2126-2143
Sanhan Huashi formula(SHF) is the intermediate of a newly approved traditional Chinese medicine(TCM) Sanhan Huashi Granules for the treatment of COVID-19 infection. The chemical composition of SHF is complex since it contains 20 single herbal medicines. In this study, UHPLC-Orbitrap Exploris 240 was used to identify the chemical components in SHF and in rat plasma, lung and feces after oral administration of SHF, and heat map was plotted for characterizing the distribution of the chemical components. Chromatographic separation was conducted on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 μm) using 0.1% formic acid(A)-acetonitrile(B) as mobile phases in a gradient elution. Electrospray ionization(ESI) source was used to acquire data in positive and negative mode. By reference to quasi-molecular ions and MS/MS fragment ions and in combination with MS spectra of reference substances and compound information in literature reports, 80 components were identified in SHF, including 14 flavonoids, 13 coumarins, 5 lignans, 12 amino-compounds, 6 terpenes and 30 other compounds; 40 chemical components were identified in rat plasma, 27 in lung and 56 in feces. Component identification and characterization of SHF in vitro and in vivo lay foundations for disclosure of its pharmacodynamic substances and elucidation of the scientific connotation.
Rats
;
Animals
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
COVID-19
;
Lignans
10.Nature-effect transformation mechanism of mulberry leaves and silkworm droppings based on chemical composition analysis.
Ai-Ping DENG ; Yue ZHANG ; Yi-Han WANG ; Jia-Chen ZHAO ; Jin-Xiu QIAN ; Li-Ping KANG ; Tie-Gui NAN ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(8):2160-2185
Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.
Animals
;
Bombyx
;
Morus/chemistry*
;
Chlorogenic Acid/analysis*
;
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Plant Leaves/chemistry*


Result Analysis
Print
Save
E-mail