1.Nature-effect transformation mechanism of mulberry leaves and silkworm droppings based on chemical composition analysis.
Ai-Ping DENG ; Yue ZHANG ; Yi-Han WANG ; Jia-Chen ZHAO ; Jin-Xiu QIAN ; Li-Ping KANG ; Tie-Gui NAN ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(8):2160-2185
Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.
Animals
;
Bombyx
;
Morus/chemistry*
;
Chlorogenic Acid/analysis*
;
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Plant Leaves/chemistry*
2.Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride.
Hao-Yang WANG ; Jian WU ; Qian ZHANG ; Xin-Feng MIN ; Xiu-Yan LIU ; Yin-Long GUO
Journal of Forensic Medicine 2023;39(2):144-150
OBJECTIVES:
To identify 1-(4-fluorophenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-α-PVP) analog 1-(4-fluoro-3-methyl phenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-3-Methyl-α-PVP) hydrochloride without reference substance.
METHODS:
The direct-injection electron ionization-mass spectrometry (EI-MS), GC-MS, electrospray ionization-high resolution mass spectrometry (ESI-HRMS), ultra-high performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS/MS), nuclear magnetic resonance (NMR), ion chromatography and Fourier transform infrared spectroscopy (FTIR) were integrated utilized to achieve the structural analysis and characterization of the unknown compound in the sample, and the cleavage mechanism of the fragment ions was deduced by EI-MS and UPLC-HRMS/MS.
RESULTS:
By analyzing the direct-injection EI-MS, GC-MS, ESI-HRMS and UPLC-HRMS/MS of the compound in the samples, it was concluded that the unknown compound was a structural analog of 4-F-α-PVP, possibly with one more methyl group in the benzene ring. According to the analysis results of 1H-NMR and 13C-NMR, it was further proved that the methyl group is located at the 3-position of the benzene ring. Since the actual number of hydrogen in 1H-NMR analysis was one more than 4-F-3-Methyl-α-PVP neutral molecule, it was inferred that the compound existed in the form of salt. Ion chromatography analysis results showed that the compound contained chlorine anion (content 11.14%-11.16%), with the structural analysis of main functional group information by FTIR, the unknown compound was finally determined to be 4-F-3-Methyl-α-PVP hydrochloride.
CONCLUSIONS
A comprehensive method using EI-MS, GC-MS, ESI-HRMS, UPLC-HRMS/MS, NMR, ion chromatography and FTIR to identify 4-F-3-Methyl-α-PVP hydrochloride in samples is established, which will be helpful for the forensic science laboratory to identify this compound or other analog compounds.
Benzene
;
Gas Chromatography-Mass Spectrometry/methods*
;
Spectrometry, Mass, Electrospray Ionization
;
Chromatography, High Pressure Liquid/methods*
3.Prediction analysis of quality markers and resource evaluation of Artemisiae Argyi Folium based on chemical composition and network pharmacology.
Chang-Jie CHEN ; Hong-Zhi DU ; Yu-Huan MIAO ; Yan FANG ; Ting-Ting ZHAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(20):5474-5486
This study is based on ultra-high-performance liquid chromatography(UPLC), gas chromatography-mass spectrometry(GC-MS), and network pharmacology methods to analyze and predict potential quality markers(Q-markers) of Artemisiae Argyi Folium. First, UPLC and GC-MS techniques were used to analyze the content of 12 non-volatile components and 8 volatile components in the leaves of 33 Artemisia argyi germplasm resources as candidate Q-markers. Subsequently, network pharmacology was employed to construct a "component-target-pathway-efficacy" network to screen out core Q-markers, and the biological activity of the markers was validated using molecular docking. Finally, cluster analysis and principal component analysis were performed on the content of Q-markers in the 33 A. argyi germplasm resources. The results showed that 18 candidate components, 60 targets, and 185 relationships were identified, which were associated with 72 pathways related to the treatment of 11 diseases and exhibited 5 other effects. Based on the combination of freedom and component specificity, six components, including eupatilin, cineole, β-caryophyllene, dinatin, jaceosidin, and caryophyllene oxide were selected as potential Q-markers for Artemisiae Argyi Folium. According to the content of these six markers, cluster analysis divided the 33 A. argyi germplasm resources into three groups, and principal component analysis identified S14 as having the highest overall quality. This study provides a reference for exploring Q-markers of Artemisiae Argyi Folium, establishing a quality evaluation system, further studying its pharmacological mechanisms, and breeding new varieties.
Molecular Docking Simulation
;
Network Pharmacology
;
Plant Breeding
;
Chromatography, High Pressure Liquid/methods*
;
Gas Chromatography-Mass Spectrometry
;
Artemisia/chemistry*
;
Drugs, Chinese Herbal/chemistry*
4.Comparison of chemical constituents in Artemisiae Argyi Folium from different Dao-di producing areas based on UPLC and HS-GC-MS.
Qian-Qian WANG ; Rui GUO ; Dan ZHANG ; Yu-Guang ZHENG ; Qian ZHENG ; Long GUO
China Journal of Chinese Materia Medica 2023;48(20):5509-5518
This study aims to compare the chemical constituents in 24 batches of Artemisiae Argyi Folium samples collected from three different Dao-di producing areas(Anguo in Hebei, Nanyang in Henan, and Qichun in Hubei). An ultra-performance liquid chromatography(UPLC) method was established to determine the content of 13 nonvolatile components, and headspace-gas chromatography-mass spectrometry(HS-GC-MS) was employed for qualitative analysis and comparison of the volatile components. The content of phenolic acids in Artemisiae Argyi Folium was higher than that of flavonoids, and the content of nonvolatile components showed no significant differences among the samples from the three Dao-di producing areas. A total of 40 volatile components were identified, and the relative content of volatile components in Artemisiae Argyi Folium was significantly different among the samples from different Dao-di producing areas. The principal component analysis and partial least squares discriminant analysis identified 8 volatile components as the potential markers for discrimination of Artemisiae Argyi Folium samples from different Dao-di producing areas. This study revealed the differences in the chemical composition of Artemisiae Argyi Folium samples from three different Dao-di producing areas, providing analytical methods and a scientific basis for the discrimination and quality evaluation of Artemisia Argyi Folium in different Dao-di producing areas.
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Flavonoids/analysis*
;
Plant Leaves/chemistry*
;
Artemisia/chemistry*
5.Qualitative and Quantitative Analysis of Five Indoles or Indazole Amide Synthetic Cannabinoids in Suspected E-Cigarette Oil by GC-MS.
Cui-Mei LIU ; Wei JIA ; Chun-Hui SONG ; Zhen-Hua QIAN ; Zhen-Dong HUA ; Yue-Meng CHEN
Journal of Forensic Medicine 2023;39(5):457-464
OBJECTIVES:
To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.
METHODS:
The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.
RESULTS:
The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.
CONCLUSIONS
The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.
Gas Chromatography-Mass Spectrometry/methods*
;
Electronic Nicotine Delivery Systems
;
Illicit Drugs/analysis*
;
Indazoles/chemistry*
;
Glycerol/analysis*
;
Cannabinoids
;
Indoles/chemistry*
;
Ions
6.Comparison of odor and quality of Galli Gigerii Endothelium Corneum derived from domestic chickens and broilers.
Wei HUANG ; Lu-Meng CHEN ; Hao-Zhou HUANG ; Ya-Nan HE ; Xiao-Ming BAO ; Jing YANG ; Jun-Zhi LIN ; Peng TAN ; Li HAN ; Run-Chun XU ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2022;47(20):5434-5442
Galli Gigerii Endothelium Corneum(GGEC) is commonly used for the clinical treatment of indigestion, vomiting, diarrhea, and infantile malnutrition with accumulation. In recent decades, omnivorous domestic chickens, the original source of GGEC, has been replaced by broilers, which may lead to significant changes in the quality of the yielding GGEC. Through subjective and objective sensory evaluation, biological evaluation, and chemical analysis, this study compared the odor and quality between GGEC derived from domestic chickens and that from broilers. The odor intensity between them was compared by odor profile analysis and it was found that the fishy odor of GGEC derived from domestic chickens was significantly weaker than that of GGEC from broilers. Headspace-solid phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry(HS-SPME/GC-QQQ-MS/MS) suggested that the overall odor-causing chemicals were consistent with the fishy odor-causing chemicals. According to the odor activity va-lue and the orthogonal partial least squares discriminant analysis(OPLS-DA) result, dimethyl trisulfide, 2-methoxy-3-isobutylpyrazine, and 2-methylisoborneol were responsible for the fishy odor(OAV≥1) and the content of fishy odor-causing chemicals in GGEC derived from broilers was 1.12-2.13 folds that in GGEC from domestic chickens. The average pepsin potency in GGEC derived from broilers was 15.679 U·mg~(-1), and the corresponding figure for the medicinal from domestic chickens was 26.529 U·mg~(-1). The results of pre-column derivatization reverse-phase high-performance liquid chromatography(RP-HPLC) assay showed that the content of total amino acids and digestion-promoting amino acids in domestic chickens-derived GGEC was 1.12 times and 1.15 times that in GGEC from broilers, and the bitter amino acid content was 1.21 times folds that of the latter. In conclusion, GGEC derived from domestic chickens had weaker fishy odor, stronger enzyme activity, higher content of digestion-promoting amino acids, and stronger bitter taste than GGEC from broilers. This study lays a scientific basis for studying the quality variation of GGEC and provides a method for identifying high-quality GGEC. Therefore, it is of great significance for the development and cultivation of GGEC as both food and medicine and breeding of corresponding varieties.
Animals
;
Odorants/analysis*
;
Chickens
;
Gas Chromatography-Mass Spectrometry/methods*
;
Tandem Mass Spectrometry
;
Solid Phase Microextraction
;
Amino Acids
;
Endothelium/chemistry*
;
Volatile Organic Compounds/analysis*
7.Research and development of an air sampling tube for chlorobenzene compounds and its supporting determination method.
Wei Jie LING ; Wei Feng RONG ; Shi Hua WU ; Guan Hao GUO ; Jiu CHEN ; Yi Min LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):613-619
Objective: To establish a GDH-3 air sample tube for simultaneous determination of twelve kinds of chlorobenzene compounds (CBs) in workplace air by gas chromatography. And to established a matching determination method. Methods: In October 2020, the vapor and aerosol CBs in workplace air were collected by GDH-3 air sampling tube, and desorption and elution with 3.00 ml toluene for 15 min, then the solution separated by DB-23 capillary column, and finally detected with microcell electron capture detector. Results: The quantitative determination ranges of twelve isomers of CBs were 0.71×10(-3)-2000.00 mg/L, with the correlative coefficients were 0.99967-0.99998. The minimum detectable concentrations were 0.04-112.63 μg/m(3), and the minimum quantification concentrations were 0.14-375.42 μg/m(3) (15.00 L sample, 3.00 ml sample solution) . The average elution efficiencies were 96.00%-104.00%. The within-run relative standard deviations (RSDs) were 2.54%-6.12%, and the between-run RSDs were 3.85%-7.87%. Sealed samples could be stable at room temperature for at least 15 days. Conclusion: GDH-3 air sample tube can be used for simultaneous determination of twelve kinds of CBs in workplace air by gas chromatography. The established supporting measurement method meets the measurement requirements of the occupational health standard detection method, and the it's suitable for the simultaneous determination of 12 kinds of CBS in the air.
Air Pollutants, Occupational/analysis*
;
Chlorobenzenes/analysis*
;
Chromatography, Gas/methods*
;
Research
;
Workplace
8.Determination of 6 BTEXs in urine by purge and trap with gas chromatography-mass spectrometry.
Jing Qi LAI ; Shao Yang LAI ; Xiao Li YE ; Chao WANG ; Min YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):619-622
Objective: To establish a method for detection of 6 BTEXs in urine by Purge and Trap-Gas Chromatography-Mass Spectrometry. Methods: The urine sample need not be diluted, but directly purge and trap in the bottle, separated by gas chromatography column, then simultaneously analyzed by retention time locking (RTL) method and selective ion scanning mode (SIM) . Results: The linear range of 6 BTEXs in urine was good, the correlation coefficient was between 0.997 4 and 0.998 9. The minimum quantification limits was 0.010-0.036 μg/L. The precision was 1.9%-4.7%, and the recovery was 93.1%-101.9%. Conclusion: The method has the advantages of wide linear range, high sensitivity and recovery. It is suitable for the determination of 6 BTEXs in urine of low level occupational-exposed or non-exposed population.
Gas Chromatography-Mass Spectrometry/methods*
;
Occupational Exposure
9.Determination of chlorobenzene metabolite-p-chlorophenol in urine by solid phase extraction-gas chromatography.
Peng WANG ; Yi Yao CAO ; Hong REN ; Xiang Jing GAO ; Qiu Liang XU ; Zhen ZHOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(9):703-706
Objective: A method to determine chlorobenzene metabolite-p-chlorophenol in urine by solid phase extraction-gas chromatography was established. Methods: In May 2021, the urine sample was hydrolyzed at 100 ℃ for 1.5 h with 2 ml concentrated hydrochloric acid. After cooling and filtering, the sample was enriched and purified by Oasis(®)MAX 6cc SPE column. Drip washing with 0.01 mol/L hydrochloric acid solution and elution with acetonitrile, the eluent was volumized to 5 ml with acetonitrile and determined by gas chromatography, and quantify by standard curve method. Results: Calibration curve of the method was linear within the range of 1.61-80.30 μg/ml and showed good linearity with r=0.9997, the regression equation was y=1.51602x-0.10234. The determination limit was 0.17 μg/ml, and the limit of quantitation was 0.55 μg/ml. Recovery rates were between 89.3%-104.4%, the relative standard deviation (RSD) of intra-day measurements ranged from 4.3% to 6.7%, and the RSD of inter-day measurements ranged from 4.5% to 6.7%. Conclusion: This method could optimize sample pretreatment, and eliminate the interference of impurities, which is sensitive, efficient and accurate for the determination of chlorobenzene metabolite-p-chlorophenol in urine.
Acetonitriles
;
Chlorophenols
;
Chromatography, Gas
;
Chromatography, High Pressure Liquid
;
Hydrochloric Acid
;
Solid Phase Extraction/methods*
10.Determination of six benzene homologues in human blood by purge and trap-gas chromatography-mass spectrometry.
Jing Qi LAI ; Lang Jing DENG ; Fen Dong FENG ; Shao Yang LAI ; Xiao Li YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):857-860
Objective: To establish a purge and trap-gas chromatography-mass spectrometry method based on soil analysis model for the determination of six benzene homologues (benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene) in human blood. Methods: From September 2020 to May 2021, diatomite was used as a dispersant to add 2.0 ml blood sample and fully mixed. The sample was directly injected into the purging and collecting bottle after purging. The gas chromatography column was used for separation. The retention time locking was used for qualitative analysis and the selected ion scanning mode (SIM) was used for detection. The detection limit and recovery rate of the method were analyzed. Results: The linear range of the method for the determination of six benzene homologues in human blood was 0.02-10.00 ng/ml, the correlation coefficient was 0.9927-0.9968, the detection limit was 0.006-0.016 ng/ml, the recovery rate of sample spiking was 84.39%-102.41%, and the precision of the method was 3.06%-6.90%. Conclusion: Purge and trap-gas chromatography-mass spectrometry can simultaneously determine the contents of six benzene homologues in human blood. The pretreatment method is simple, time-saving, and the method has low detection limit, which provides a scientific basis for the detection of benzene homologues in human body.
Humans
;
Benzene/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Xylenes/analysis*
;
Benzene Derivatives/analysis*
;
Toluene/analysis*

Result Analysis
Print
Save
E-mail