1.Preparation of monoclonal antibodies with high specificity for glycated hemoglobin and establishment of a rapid detection method.
Chaofan YIN ; Yingfu ZHANG ; Kebei WANG ; Jichuang WANG ; Yongwei LI ; Xiaojun WANG ; Xudong WANG ; Panpan SHI ; Yunlong WANG
Chinese Journal of Biotechnology 2025;41(8):3165-3177
Hemoglobin A1c (HbA1c) has a unique structure that makes monoclonal antibody (mAb) preparation challenging. This study aims to develop a method for preparing HbA1c mAbs and establish a fluorescent immunochromatographic assay (FICA) for rapid detection of HbA1c. Three glycosylated peptides were synthesized and used to prepare complete antigens, which were identified by dot enzyme-linked immunosorbent assay (Dot-ELISA) and ultraviolet absorption spectroscopy. The complete antigens and natural HbA1c were used for cross-immunization of mice, and the optimal complete antigen was selected. The mouse with the highest serum titer was chosen for mAb preparation. The purity and specificity of the mAbs were verified, and a FICA method was developed. The optimal complete antigen, with a titer of 1:512 000, was successfully prepared and selected. Fusion with splenocytes resulted in four specific HbA1c antibodies (purity > 90%). The best antibody exhibited a binding constant (Ka) of 1.67×1010 L/mol with the antigen. Based on this antibody, a FICA method was successfully established, capable of producing results within 15 min. The method demonstrated a good linear range (3%-13% HbA1c, y=0.071 3x+0.005 6, R2=0.993 7), recovery rates of 98%-102%, precision < 10.00%, and no nonspecific reactions. Clinical testing of 210 samples showed positive agreement of 96.36%, negative agreement of 97.00%, and overall agreement of 96.68%. The receiver operating characteristic (ROC) curve analysis yielded an area under curve (AUC) of 0.980 9 [95% confidence interval (CI): 0.961 0-1.000 0], with high consistency verified in multicenter studies. We successfully developed a key technique for preparing HbA1c monoclonal antibodies and established a FICA method for rapid detection of HbA1c. It will provide an efficient and convenient detection method for the early diagnosis and long-term management of diabetes and its complications.
Antibodies, Monoclonal/biosynthesis*
;
Animals
;
Mice
;
Glycated Hemoglobin/immunology*
;
Mice, Inbred BALB C
;
Humans
;
Antibody Specificity
;
Chromatography, Affinity/methods*
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Female
2.An electrostatically coupled polypeptide affinity multimodal chromatography medium for the purification of antibodies and their separation efficiency.
Yuxuan CHENG ; Liuyang WANG ; Kaixuan JIANG ; Songping ZHANG ; Hongbo YAN ; Jian LUO
Chinese Journal of Biotechnology 2025;41(8):3262-3274
As the need for antibody production rises, there is an urgent need to lower the costs and enhance the efficiency of the separation process. Currently, the chromatographic media used for antibody separation and purification often focus on individual properties of antibodies, such as affinity, hydrophobicity, and charge, leading to issues like low purification efficiency or inadequate adsorption capacity. To address this, an electrostatically coupled polypeptide affinity medium (FD7-3, 5-diaminobenzoic acid n-sepharose, FD7-DA-Sepharose) was developed for rapid purification of antibodies from cell culture supernatant. This medium utilized 3, 5-diaminobenzoic acid as a spacer to attach the heptapeptide-affinity ligand (FYEILHD, FD7) to agarose microspheres. Antibodies could be adsorbed through charge interactions with the carboxyl functional group of the FD7-DA-Sepharose spacer, while FD7 enhanced electrostatic coupling and affinity adsorption through synergistic effects, significantly increasing the adsorption capacity while maintaining the affinity and specificity. The influences of pH and ionic strength on adsorption capacity were investigated with human immunoglobulin as a model protein. The static adsorption capacity (Qm) of FD7-DA-Sepharose in the solution of pH 6.0 reached 67.73 mg/mL, representing a 52.68% increase compared with that (44.36 mg/mL) of the commercial Protein A affinity medium. Furthermore, the elution conditions for FD7-DA- Sepharose were mild (20 mmol/L PB, 0.5 mol/L NaCl, pH 6.0), in contrast to the harsh acidic elution (pH 2.7-3.6) typically associated with Protein A, which can damage antibody integrity. The FD7-DA-Sepharose medium was then employed to purify antibodies from cell culture supernatant, achieving the yield of 94.8% and the purity of 98.4%. The secondary structure of the purified antibody was determined by circular dichroism spectroscopy. The results demonstrated that FD7-DA-Sepharose enabled efficient purification of antibodies from cell culture supernatant, which provided a cost-effective solution (approximately one-third the price of commercial Protein A affinity medium) with gentle elution conditions that preserve the natural conformation of antibodies. This approach paves a novel, economical, and efficient way for the separation and purification of antibodies from cell culture supernatant.
Chromatography, Affinity/methods*
;
Static Electricity
;
Humans
;
Sepharose/analogs & derivatives*
;
Peptides/chemistry*
;
Adsorption
;
Antibodies/isolation & purification*
3.A fluorescence immunochromatography method for detection of human papillomavirus type 16 E6 and L1 proteins.
Xin'er LIU ; Yinzhen ZHAO ; Nannan NIU ; Lingke LI ; Xueli DU ; Jinxiang GUO ; Yingfu ZHANG ; Jichuang WANG ; Yiqing ZHANG ; Yunlong WANG
Chinese Journal of Biotechnology 2024;40(11):4266-4276
This study aims to establish a time-resolved fluorescence immunochromatography method for simultaneous determination of human papillomavirus (HPV) type 16 E6 and L1 protein concentrations. The amount of lanthanide microsphere-labeled antibodies, the concentration of coated antibodies, and the reaction time were optimized, and then a test strip for the simultaneous determination of the protein concentrations was prepared. The performance of the detection method was evaluated based on the concordance of the results from clinical practice. The optimal conditions were 8 μg and 10 μg of HPV16 L1 and E6-labeled antibodies, respectively, 1.5 mg/mL coated antibodies, and reaction for 10 min. The detection with the established method for L1 and E6 proteins showed the linear ranges of 5-320 ng/mL and 2-64 ng/mL and the lowest limits of detection of 1.78 ng/mL and 1.09 ng/mL, respectively. There was no cross reaction with human immunodeficiency virus (HIV), treponema pallidum (TP), or HPV18 E6 and L1 proteins. The average recovery rate of the established method was between 97% and 107%. The test strip prepared in this study showed the sensitivity, specificity, and diagnostic accuracy of 97.46%, 90.57%, and 95.32%, respectively, in distinguishing patients with cervical cancer and precancerous lesions from healthy subjects, with the area under the curve (AUC) of 0.980 1 and 95% Confidence Interval (CI) of 0.956 5 to 1.000 0. The time-resolved fluorescence immunochromatography combined with the test strips prepared in this study showed high sensitivity, high accuracy, simple operation, and rapid reaction in the quantitation of HPV16 E6 and L1 proteins. It thus can be used as an auxiliary method for the diagnosis and early screening of cervical cancer and precancerous lesions and the assessment of disease course.
Oncogene Proteins, Viral/immunology*
;
Humans
;
Chromatography, Affinity/methods*
;
Female
;
Human papillomavirus 16
;
Repressor Proteins/immunology*
;
Capsid Proteins/immunology*
;
Papillomavirus Infections/diagnosis*
;
Fluorescence
;
Uterine Cervical Neoplasms/virology*
4.Optimization and application of caprylic acid precipitation in the purification of monoclonal antibody.
Chinese Journal of Biotechnology 2023;39(9):3757-3771
In response to the market demand for therapeutic antibodies, the upstream cell culture scale and expression titer of antibodies have been significantly improved, while the production efficiency of downstream purification process is relatively fall behind, and the downstream processing capacity has become a bottleneck limiting antibody production throughput. Using monoclonal antibody mab-X as experimental material, we optimized the caprylic acid (CA) precipitation process conditions of cell culture fluid and low pH virus inactivation pool, and studied two applications of using CA treatment to remove aggregates and to inactivate virus. Based on the lab scale study, we carried out a 500 L scale-up study, where CA was added to the low pH virus inactivation pool for precipitation, and the product quality and yield before and after precipitation were detected and compared. We found that CA precipitation significantly reduced HCP residuals and aggregates both before and after protein A affinity chromatography. In the aggregate spike study, CA precipitation removed about 15% of the aggregates. A virus reduction study showed complete clearance of a model retrovirus during CA precipitation of protein A purified antibody. In the scale-up study, the depth filtration harvesting, affinity chromatography, low pH virus inactivation, CA precipitation and depth filtration, and cation exchange chromatography successively carried out. The mixing time and stirring speed in the CA precipitation process significantly affected the CA precipitation effect. After CA precipitation, the HCP residue in the low pH virus inactivation solution decreased 895 times. After precipitation, the product purity and HCP residual meet the quality criteria of monoclonal antibodies. CA precipitation can reduce the chromatography step in the conventional purification process. In conclusion, CA precipitation in the downstream process can simplify the conventional purification process, fully meet the purification quality criterion of mab-X, and improve production efficiency and reduce production costs. The results of this study may promote the application of CA precipitation in the purification of monoclonal antibodies, and provide a reference for solving the bottleneck of the current purification process.
Cricetinae
;
Animals
;
Antibodies, Monoclonal/metabolism*
;
Caprylates/chemistry*
;
Cell Culture Techniques
;
Chromatography, Affinity
;
CHO Cells
;
Cricetulus
;
Chemical Precipitation
5.Evaluation of Colloidal Gold Immunochromatography for the Diagnosis of Human Brucellosis Caused by Smooth Brucella.
Shuai Bing DONG ; Na TA ; Li Ping WANG ; Meng Guang FAN ; Yue Xi LI ; Cui Hong ZHANG ; Li Jie ZHANG ; Zi Jun WANG ; Hai JIANG
Biomedical and Environmental Sciences 2022;35(8):764-767
6.Colloidal gold immunochromatographic test strip for virus detection: a review.
Xuxu DONG ; Wei SUN ; Pan CAO ; Xiaodan LIU
Chinese Journal of Biotechnology 2022;38(9):3243-3254
Colloidal gold immunochromatographic strip is a fast, sensitive and accurate solid-phase labeling detection technology, which has the advantages of low price, easy operation, rapid detection and high specificity, with the potential to qualitatively detect the relevant viruses in a short time with desired sensitivity and accuracy. It effectively addresses the disadvantages of long detection time, equipment inconvenience and professionalism requirement of the traditional detection methods used in the medical, veterinary, animal, plant virus detection, pesticide residue detection and other areas. Presently, the technology has been applied in the detection of bacterial diseases, viral diseases and prevention of extensive spread of infectious diseases, and has sufficient room for further development. This review summarizes the application of colloidal gold immunochromatography strip for biological virus detection, followed by prospecting future perspectives.
Animals
;
Antibodies, Monoclonal/chemistry*
;
Chromatography, Affinity
;
Gold Colloid/chemistry*
;
Pesticide Residues
;
Sensitivity and Specificity
7.Advances in the methods of phosphopeptide enrichment and separation in phosphoproteomic research.
Jiaran LI ; Xiulan CHEN ; Fuquan YANG
Chinese Journal of Biotechnology 2022;38(10):3648-3658
The systematic and in-depth study of phosphoproteome rely on highly reproducible and specific phosphopeptide enrichment methods. At present, a variety of enrichment methods have been developed based on different principles, and these methods often display different selectivity and specificity. It is therefore very important to select the most suitable enrichment method according to different research purposes. This review summarized the phosphopeptide enrichment based on affinity chromatography, immunoprecipitation, chemical derivatization, chromatography and other newly developed methods. The advantages and disadvantages of these methods, as well as the related optimization and improvement strategies, were discussed in detail. In addition, we also briefly summarized the progress of the combination of phosphopeptide enrichment and fractionation methods developed in recent years.
Phosphopeptides/metabolism*
;
Proteomics/methods*
;
Titanium/chemistry*
;
Chromatography, Affinity
;
Proteome
;
Phosphorylation
8.Preparation of different fragments of SARS-CoV-2 N protein and its application in fluorescence chromatography.
Dengzhou LI ; Yunlong WANG ; Yiqing ZHANG ; Jichuang WANG ; Yao LU ; Guo LI ; Yongwei LI ; Yulin LI ; Heng ZHANG ; Xiaojun WANG
Chinese Journal of Biotechnology 2021;37(11):4066-4074
Different fragments of SARS-CoV-2 nucleocapsid (N) protein were expressed and purified, and a fluorescence immunochromatography method for detection of SARS-CoV-2 total antibody was established. The effect of different protein fragments on the performance of the method was evaluated. The N protein sequence was analyzed by bioinformatics technology, expressed in prokaryotic cell and purified by metal ion affinity chromatography column. Different N protein fragments were prepared for comparison. EDC reaction was used to label fluorescence microsphere on the synthesized antigen to construct sandwich fluorescence chromatography antibody detection assay, and the performance was systemically evaluated. Among the 4 prepared N protein fragments, the full-length N protein (N419) was selected as the optimized coating antigen, N412 with 0.5 mol/L NaCl was used as the optimal combination; deleting 91-120 amino acids from the N-terminal of N412 reduced non-specific signal by 87.5%. the linear range of detection was 0.312-80 U/L, the limit of detection was 0.165 U/L, and the accuracy was more than 95%. A fluorescence immunochromatographic detection method for analysis of SARS-CoV-2 total antibody was established by pairing N protein fragments. The detection result achieved 98% concordance with the commercially available Guangzhou Wanfu test strip, which is expected to be used as a supplementary approach for detection of SARS-CoV-2. The assay could also provide experimental reference for improving the performance of COVID-19 antibody detection reagents.
Antibodies, Viral
;
COVID-19
;
Chromatography, Affinity
;
Fluorescent Antibody Technique
;
Humans
;
Microspheres
;
SARS-CoV-2
;
Sensitivity and Specificity
9.Establishment of fluorescence immunochromatography detection for cytoskeleton-associated protein 4.
Lu ZHANG ; Yunlong WANG ; Yulin LI ; Jichuang WANG ; Yinyin YU ; Heng ZHANG ; Yiqing ZHANG ; Lei CHENG ; Shoutao ZHANG
Chinese Journal of Biotechnology 2020;36(6):1216-1222
A rapid and simple method to detect tumor markers in liver cancer was established by combining immunochromatography technique with fluorescent microsphere labeling. According to the principle of double antibody sandwich, the cytoskeleton-associated protein 4 (CKAP4) paired antibody was used as the labeled and coated antibody, and the goat anti-rabbit polyclonal antibody was used as the quality control line coated antibody in the preparation of the CKAP4 fluorescent immunochromatographic test strips. After the preparation, the test strips were evaluated on various performance indicators, such as linearity, precision and stability. The CKAP4 immunochromatographic strip prepared by time-resolved fluorescent microspheres had high sensitivity, and good specificity. Its precision was within 15%, recovery between 85% and 115%, and linear range between 25 and 1 000 pg/mL. The test strip could be kept stable at 37 °C for 20 days, and it correlated well with commercial ELISA kits. The CKAP4 fluorescence immunochromatography method can quantitatively detect the content of CKAP4 in serum. Furthermore, it is rapid, sensitive, simple, economical and single-person operation. This method has the potential of becoming a new method for the diagnosis and treatment of liver cancer.
Animals
;
Antibodies
;
metabolism
;
Chromatography, Affinity
;
Fluorescence
;
Humans
;
Liver Neoplasms
;
diagnosis
;
Membrane Proteins
;
isolation & purification
;
Molecular Diagnostic Techniques
;
instrumentation
;
methods
;
Sensitivity and Specificity
10.Colloidal gold immunochromatographic strip for rapid detection of Haemophilus influenzae.
Ye TAO ; Huiwen HAO ; Jie LI ; Meng WANG ; Yi WANG ; Gaiping ZHANG ; Zheng HU
Chinese Journal of Biotechnology 2019;35(5):901-909
To establish a novel colloidal gold immunochromatography assay (GICA) for rapid, sensitive and accurate detection of Haemophilus influenzae infection by using the outer membrane protein P6 as detection target. First, the linear antigen epitope located in the extracellular domain of the P6 protein (GenBank accession number: AGH02799) was predicted by bioinformatics analysis. The region (62-75 aa of the protein) with strong antigen specificity was chosen and synthesized. Two rabbits were then immunized by the polypeptides (14 aa) for production of polyclonal antibodies. Then, the recombinant P6 proteins were also obtained to produce polyclonal antibodies. Finally, based on the two antibodies, a novel colloidal GICA for detection of Haemophilus influenzae infection was established and the specificity, sensitivity, repeatability and stability of this method were evaluated. At the same time, the method was tested in clinical simulation, and the plate culture method was used to verify its accuracy. The test strip for Haemophilus influenzae infection was successfully prepared. The detection limit of the test strip was as low as 1×105 CFU/mL and the whole process can be completed within 15 minutes. The strip specifically recognized Haemophilus influenzae and did not react with nine of other common respiratory pathogens such as Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumonia, and Legionella pneumophila. And the strips could be stored at 25 °C for at least 6 months without losing sensitivity or specificity. The coincidence rate between the results of 200 clinical samples and the plate culture method was 90.5%. Haemophilus influenzae protein P6, which possessed a high degree of surface antigen accessibility and antigencity, could be used as a marker for Haemophilus influenzae detection. The immunochromatographic colloidal gold test strip which bears the features of rapidity, convenience and sensitivity provides a unique tool for the on-site surveillance and diagnosis of Haemophilus influenzae infection in clinical test.
Animals
;
Chromatography, Affinity
;
instrumentation
;
Diagnostic Tests, Routine
;
standards
;
Gold Colloid
;
chemistry
;
Haemophilus Infections
;
diagnosis
;
Haemophilus influenzae
;
Humans
;
Limit of Detection
;
Rabbits
;
Sensitivity and Specificity

Result Analysis
Print
Save
E-mail