1.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
2.Protective mechanism of Chaihu Shugan San against CORT-induced damage in PC12 cells based on mitochondrial dynamics.
Ling-Yuan ZHANG ; Qi-Qi ZHENG ; Jia-Li SHI ; Pei-Fang WANG ; Jia-Li LU ; Jian-Ying SHEN
China Journal of Chinese Materia Medica 2025;50(16):4546-4554
In this report, the protective effect and molecular mechanism of Chaihu Shugan San-containing serum on corticosterone(CORT)-induced mitochondrial damage in pheochromocytoma(PC12) cells was studied based on CORT-induced rat PC12 cell model. The cultured cells were divided into five groups: blank control group, CORT group(400 μmol·L~(-1) CORT), Chaihu Shugan San-containing serum group(400 μmol·L~(-1) CORT + 10% Chaihu Shugan San-containing serum), control serum group(400 μmol·L~(-1) CORT + 10% control serum), and fluoxetine group(400 μmol·L~(-1) CORT + 10% fluoxetine-containing serum). The study was carried out by cell activity detection, mitochondrial morphology observation, membrane potential measurement, energy metabolism analysis, and mitochondrial dynamics-related protein detection. The results showed that CORT treatment significantly reduced the survival rate of PC12 cells, altered mitochondrial morphology, and decreased mitochondrial membrane potential and adenosine triphosphate(ATP) synthetic rate. Both Chaihu Shugan San-and fluoxetine-containing serum significantly increased the survival rate of CORT-treated PC12 cells and the ATP synthetic rate in the mitochondria. Unlike fluoxetine, Chaihu Shugan San-containing serum significantly inhibited the decrease in mitochondrial membrane potential caused by CORT and increased the oxygen consumption rate(OCR) values of both mitochondrial maximum respiration and reserve respiration capacity. Western blot analysis showed that CORT induced upregulated protein expressions of dynamin-related protein 1(Drp1) and peroxisome proliferator-activated receptor gamma co-activator 1α(PGC-1α) in PC12 cells and specific protein expression of optic atrophy protein 1(OPA1), yet it repressed the protein expressions of silent information regulator 1(SIRT1) and mitochondrial fusion protein 1(Mfn1) in PC12 cells. Both Chaihu Shugan San-and fluoxetine-containing serum significantly inhibited the protein expression of Drp1. However, only Chaihu Shugan San-containing serum could significantly inhibit the CORT-induced upregulation protein of PGC-1α. RESULTS:: herein suggest that Chaihu Shugan San-containing serum can alleviate CORT-induced damage in PC12 cells, which may be related to the mitochondrial fragmentation/lipid peroxidation protection by Drp1 inhibition, as well as mitochondrial dynamics and energy metabolism mediated by PGC-1α/SIRT1 signaling pathway.
Animals
;
PC12 Cells
;
Rats
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Corticosterone/adverse effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Protective Agents/pharmacology*
;
Cell Survival/drug effects*
3.Effect of Bushen Huoxue Granule on Clearance of Pathological α-Synuclein in MPP+-Induced PC12 Cells.
Zhen-Xian LUAN ; Xiang-Lin TANG ; Fei-Ran HAO ; Min LI ; Shao-Dan LI ; Ming-Hui YANG
Chinese journal of integrative medicine 2025;31(9):830-836
OBJECTIVE:
To investigate the effects of Bushen Huoxue Granule on the ubiquitin-proteasome system (UPS) in an in vitro model of Parkinson's disease.
METHODS:
After treated with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) for 24 h, the cells were incubated with drug-free serum, Madopar-containing serum or Bushen Huoxue Granule-containing serum (BCS, 5%, 10%, and 20%) for another 24 h. The levels of α-synuclein (α-syn), tyrosine hydroxylase (TH) and UPS-related proteins were detected by Western blot. The expression levels of α-syn in PC12 cells were also analyzed by Western blot after treated with proteasome inhibitor MG132 and WT-α-syn plasmid transfection, respectively, as well as the alterations induced by subsequent BCS intervention. Immunocytochemistry was performed to determine the changes in α-syn phosphorylation at serine 129 (pSer129-α-syn) expression. The 20S proteasome levels were measured by enzyme-linked immunosorbnent assay.
RESULTS:
BCS (volume fraction ⩽20%) intervention could alleviate the MMP+-induced cell viability decrease (P<0.05). In the MPP+ treated cells, α-syn was up-regulated, while TH and proteins of UPS such as ubiquitin (Ub), Ub binding with Ub-activating enzyme (UBE1), Parkin and Ub C-terminal hydrolase-1 (UCHL-1) were down-regulated (P<0.05). BCS intervention could attenuate the above changes (P<0.05). The activity of BCS on blocking α-syn accumulation was weakened by MG132 (P<0.05). While α-syn level was significantly increased in cells transfected with plasmid, and reduced by BCS intervention (P<0.05). pSer129-α-syn was increased in MPP+-induced PC12 cells, whereas decreased by later BCS intervention (P<0.05). The 20S proteasome activity of MPP+-induced PC12 cells was decreased, but increased after BCS intervention (P<0.05).
CONCLUSION
BCS intervention protected UPS function, increased 20S proteasome activity, promoted pathological α-syn clearance, restored cell viability, and reversed the damage caused by MPP+ in the in vitro model of Parkinson's disease.
PC12 Cells
;
alpha-Synuclein/metabolism*
;
Rats
;
Animals
;
1-Methyl-4-phenylpyridinium/toxicity*
;
Proteasome Endopeptidase Complex/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Ubiquitin/metabolism*
;
Cell Survival/drug effects*
;
Phosphorylation/drug effects*
;
Tyrosine 3-Monooxygenase/metabolism*
4.Effect of miR-96-5p targeting IRS1 on apoptosis of PC12 cells induced by aluminum maltol.
Chan Ting HE ; Yang LEI ; Jie Ran DU ; Jing Jing JIA ; Qian HU ; Qiao NIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(5):324-332
Objective: To investigate the effect and mechanism of miR-96-5p on apoptosis of PC12 cells induced by maltol aluminum. Methods: In January 2021, PC12 cells at logarithmic growth phase were divided into blank control group and low, medium and high dose group. Cells in each group were treated with 0, 100, 200 and 400 μmol/L maltol aluminum for 24 hours respectively. Cells were collected and cell apoptosis rates were detected by flow cytometry, miR-96-5p and insulin receptor substrate 1 (IRS1) mRNA expressions were detected by qRT-PCR, and the protein expression levels of cysteine protease 3 (Caspase3) 、activated cysteine protease 3 (Cleaved-caspase3) 、IRS1、phosphorylated protein kinase B (p-AKT) and phosphorylated glucose synthesis kinase 3β (p-GSK3β) were detected by western blotting. The target binding relationship between miR-96-5p and IRS1 was detected by double luciferase reporter gene experiment. The miR-96-5p inhibitor cells and negative control cells were constructed after transfecting PC12 cells with miR-96-5p inhibitor for 24 hours. The cells were divided into blank control group, negative control group, aluminum exposure group, aluminum exposure+negative control group, aluminum exposure+miR-96-5p inhibition group, and miR-96-5p inhibition group. After transfecting PC12 cells with miR-96-5p inhibition and IRS1 siRNA for 24 h, the cells were divided into aluminum exposure+miR-96-5p inhibition+negative control group and aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group. The control group was cultured in complete culture medium, and cells in the aluminum exposure group were treated with 200 μmol/L maltol aluminum for 24 hours. Cells in each group were collected and the apoptosis rate, miR-96-5p and IRS1 mRNA expression levels, as well as protein expression levels of Caspase3, Cleaved-caspase3, IRS1, p-AKT, and p-GSK3β were measured. Results: After 24 hours of exposure, compared with blank control group and low-dose group, the apoptosis rates, relative expressions of Caspase3 and Cleaved-caspase3 proteins, and relative expressions of miR-96-5p in the medium and high-dose groups of PC12 cells were significantly increased, while the relative expression levels of IRS1 mRNA, IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05). Targetscan prediction and double luciferase report experiment both proved that IRS1 was a direct target gene of miR-96-5p. In the transfection experiment, compared with the aluminum exposure group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins, the relative expression of miR-96-5p in the aluminum exposure+miR-96-5p inhibition group were significantly decreased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly increased (P<0.05). In the IRS1 low expression experiment, compared with the aluminum exposure+miR-96-5p inhibition+negative control group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins in the aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group were significantly increased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05) . Conclusion: The increased expression of miR-96-5p and the targeted inhibition of IRS1 may be one of the mechanisms of apoptosis of PC12 cells induced by maltol aluminum exposure.
Animals
;
Rats
;
Aluminum/toxicity*
;
Apoptosis
;
Cell Proliferation
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Insulin Receptor Substrate Proteins/metabolism*
;
MicroRNAs/metabolism*
;
PC12 Cells
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
7.Mechanism of astragaloside Ⅳ in regulating autophagy of PC12 cells under oxygen-glucose deprivation by medicating Akt/mTOR/HIF-1α pathway.
Jia-Xin LONG ; Meng-Zhi TIAN ; Xiao-Yi CHEN ; Yu XIONG ; Huang-He YU ; Yong-Zhen GONG ; Huang DING ; Ming-Xia XIE ; Ke DU
China Journal of Chinese Materia Medica 2023;48(19):5271-5277
This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.
Rats
;
Animals
;
PC12 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Glucose/therapeutic use*
;
Oxygen/metabolism*
;
Beclin-1/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Apoptosis
;
Reperfusion Injury/drug therapy*
8.Molecular mechanism of ligustilide attenuating OGD/R injury in PC12 cells by inhibiting ferroptosis.
Lei SHI ; Chen-Chen JIANG ; Jia-Jun LU ; Zi-Xu LI ; Wang-Jie LI ; Xiu-Yun YIN ; Zhuo CHEN ; Xin-Ya ZHAO ; Hui ZHANG ; Hao-Ran HU ; Lu-Tan ZHOU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(11):3046-3054
The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.
Animals
;
Rats
;
PC12 Cells
;
Ferroptosis/genetics*
;
Reactive Oxygen Species
;
Transcription Factors
;
Glutathione
9.MASH1 induces neuron transdifferentiation of adrenal medulla chromaffin cells.
Emin PENG ; Chengping HU ; Juntao FENG ; Ruoxi HE
Journal of Central South University(Medical Sciences) 2023;48(4):526-537
OBJECTIVES:
Nerve growth factor (NGF) induces neuron transdifferentiation of adrenal medulla chromaffin cells (AMCCs) and consequently downregulates the secretion of epinephrine (EPI), which may be involved in the pathogenesis of bronchial asthma. Mammalian achaete scute-homologous 1 (MASH1), a key regulator of neurogenesis in the nervous system, has been proved to be elevated in AMCCs with neuron transdifferentiation in vivo. This study aims to explore the role of MASH1 in the process of neuron transdifferentiation of AMCCs and the mechanisms.
METHODS:
Rat AMCCs were isolated and cultured. AMCCs were transfected with siMASH1 or MASH1 overexpression plasmid, then were stimulated with NGF and/or dexamethasone, PD98059 (a MAPK kinase-1 inhibitor) for 48 hours. Morphological changes were observed using light and electron microscope. Phenylethanolamine-N-methyltransferase (PNMT, the key enzyme for epinephrine synthesis) and tyrosine hydroxylase were detected by immunofluorescence. Western blotting was used to test the protein levels of PNMT, MASH1, peripherin (neuronal markers), extracellular regulated protein kinases (ERK), phosphorylated extracellular regulated protein kinases (pERK), and JMJD3. Real-time RT-PCR was applied to analyze the mRNA levels of MASH1 and JMJD3. EPI levels in the cellular supernatant were measured using ELISA.
RESULTS:
Cells with both tyrosine hydroxylase and PNMT positive by immunofluorescence were proved to be AMCCs. Exposure to NGF, AMCCs exhibited neurite-like processes concomitant with increases in pERK/ERK, peripherin, and MASH1 levels (all P<0.05). Additionally, impairment of endocrine phenotype was proved by a signifcant decrease in the PNMT level and the secretion of EPI from AMCCs (all P<0.01). MASH1 interference reversed the effect of NGF, causing increases in the levels of PNMT and EPI, conversely reduced the peripherin level and cell processes (all P<0.01). MASH1 overexpression significantly increased the number of cell processes and peripherin level, while decreased the levels of PNMT and EPI (all P<0.01). Compared with the NGF group, the levels of MASH1, JMJD3 protein and mRNA in AMCCs in the NGF+PD98059 group were decreased (all P<0.05). After treatment with PD98059 and dexamethasone, the effect of NGF on promoting the transdifferentiation of AMCCs was inhibited, and the number of cell processes and EPI levels were decreased (both P<0.05). In addition, the activity of the pERK/MASH1 pathway activated by NGF was also inhibited.
CONCLUSIONS
MASH1 is the key factor in neuron transdifferentiation of AMCCs. NGF-induced neuron transdifferentiation is probably mediated via pERK/MASH1 signaling.
Animals
;
Rats
;
Adrenal Medulla
;
Cell Transdifferentiation
;
Chromaffin Cells
;
Dexamethasone
;
Epinephrine/pharmacology*
;
Mammals
;
Nerve Growth Factor
;
Neurons
;
Peripherins
;
Protein Kinases
;
Tyrosine 3-Monooxygenase
10.Construction and evaluation of a gradient stress model of PC12 cells induced by corticosterone.
Ming-Zhe LI ; Long-Fei XU ; Zhao-Li CHEN ; Xin-Xing WANG ; Ling-Ling PU ; Wei-Li LIU ; Tian-Hui WANG
Chinese Journal of Applied Physiology 2022;38(3):284-288
Objective: A gradient stress model of PC12 cells induced by corticosterone was established to provide a basis for the evaluation and regulation of cell stress. Methods: The effect of corticosterone on cell viability was observed by measuring PC12 cell viability at different concentrations of corticosterone (0~1 000 μmol/L) after different intervention times (8~48 h) to screen the cell models for optimal intervention conditions. Key stress indicators (MDA, SOD, NADH, LDH) were measured spectrophotometrically and microscopically to evaluate the models. Results: When the concentration of corticosterone was below 200 μmol/L and the intervention time was 12 h, the cell viability was below half inactivation rate, which could reduce the confounding factors due to the decrease of cell viability in each group. Compared with the blank control group, corticosterone increased the levels of MDA, NADH and LDH,and decreased the levels of SOD in the model group in a concentration-dependent manner (P<0.01), which was consistent with the construction of the gradient stress model. Conclusion: A gradient stress injury model of PC12 cells was successfully established, with intervention concentrations of 0 μmol/L, 25 μmol/L, 50 μmol/L, 100 μmol/L, 150 μmol/L and 200 μmol/L corticosterone at an intervention time of 12 h. The degree of stress injury of the cell model was increased gradually, which could be used as a basis and object for conducting cell stress injury assessment and regulation experiments.
Animals
;
Cell Survival
;
Corticosterone/pharmacology*
;
NAD/pharmacology*
;
PC12 Cells
;
Rats
;
Superoxide Dismutase

Result Analysis
Print
Save
E-mail