1.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Intermittent Metabolic Switching and Vascular Cognitive Impairment
Vismitha RAJEEV ; Nishat I. TABASSUM ; David Y. FANN ; Christopher P. CHEN ; Mitchell K.P. LAI ; Thiruma V. ARUMUGAM
Journal of Obesity & Metabolic Syndrome 2024;33(2):92-107
Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and humans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of function in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, instigating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white matter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models.Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles existing data supporting IF’s potential in treating VCI-related vascular and neuronal pathologies, emphasizing the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the available data supporting IF’s potential in treating VCI by emphasizing the underlying mechanisms that make IF a promising intervention for VCI.
5.Intermittent Metabolic Switching and Vascular Cognitive Impairment
Vismitha RAJEEV ; Nishat I. TABASSUM ; David Y. FANN ; Christopher P. CHEN ; Mitchell K.P. LAI ; Thiruma V. ARUMUGAM
Journal of Obesity & Metabolic Syndrome 2024;33(2):92-107
Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and humans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of function in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, instigating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white matter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models.Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles existing data supporting IF’s potential in treating VCI-related vascular and neuronal pathologies, emphasizing the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the available data supporting IF’s potential in treating VCI by emphasizing the underlying mechanisms that make IF a promising intervention for VCI.
6.Intermittent Metabolic Switching and Vascular Cognitive Impairment
Vismitha RAJEEV ; Nishat I. TABASSUM ; David Y. FANN ; Christopher P. CHEN ; Mitchell K.P. LAI ; Thiruma V. ARUMUGAM
Journal of Obesity & Metabolic Syndrome 2024;33(2):92-107
Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and humans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of function in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, instigating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white matter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models.Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles existing data supporting IF’s potential in treating VCI-related vascular and neuronal pathologies, emphasizing the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the available data supporting IF’s potential in treating VCI by emphasizing the underlying mechanisms that make IF a promising intervention for VCI.
7.Through the eyes into the brain, using artificial intelligence.
Kanchalika SATHIANVICHITR ; Oriana LAMOUREUX ; Sakura NAKADA ; Zhiqun TANG ; Leopold SCHMETTERER ; Christopher CHEN ; Carol Y CHEUNG ; Raymond P NAJJAR ; Dan MILEA
Annals of the Academy of Medicine, Singapore 2023;52(2):88-95
INTRODUCTION:
Detection of neurological conditions is of high importance in the current context of increasingly ageing populations. Imaging of the retina and the optic nerve head represents a unique opportunity to detect brain diseases, but requires specific human expertise. We review the current outcomes of artificial intelligence (AI) methods applied to retinal imaging for the detection of neurological and neuro-ophthalmic conditions.
METHOD:
Current and emerging concepts related to the detection of neurological conditions, using AI-based investigations of the retina in patients with brain disease were examined and summarised.
RESULTS:
Papilloedema due to intracranial hypertension can be accurately identified with deep learning on standard retinal imaging at a human expert level. Emerging studies suggest that patients with Alzheimer's disease can be discriminated from cognitively normal individuals, using AI applied to retinal images.
CONCLUSION
Recent AI-based systems dedicated to scalable retinal imaging have opened new perspectives for the detection of brain conditions directly or indirectly affecting retinal structures. However, further validation and implementation studies are required to better understand their potential value in clinical practice.
Humans
;
Artificial Intelligence
;
Brain/diagnostic imaging*
;
Retina
;
Optic Disk
;
Aging
8.Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: an international registry study.
Huai ZHANG ; Rafael S RIOS ; Jerome BOURSIER ; Rodolphe ANTY ; Wah-Kheong CHAN ; Jacob GEORGE ; Yusuf YILMAZ ; Vincent Wai-Sun WONG ; Jiangao FAN ; Jean-François DUFOUR ; George PAPATHEODORIDIS ; Li CHEN ; Jörn M SCHATTENBERG ; Junping SHI ; Liang XU ; Grace Lai-Hung WONG ; Naomi F LANGE ; Margarita PAPATHEODORIDI ; Yuqiang MI ; Yujie ZHOU ; Christopher D BYRNE ; Giovanni TARGHER ; Gong FENG ; Minghua ZHENG
Chinese Medical Journal 2023;136(3):341-350
BACKGROUND:
Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.
METHODS:
Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).
RESULTS:
A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P < 0.001, P = 0.026 and P = 0.049, respectively). CK-18 M30 levels were positively associated with histological NAS in most centers. The area under the receiver operating characteristics (AUROC) for NASH was 0.750 (95% confidence intervals: 0.714-0.787), and CK-18 M30 at Youden's index maximum was 275.7 U/L. Both sensitivity (55% [52%-59%]) and positive predictive value (59%) were not ideal.
CONCLUSION
This large multicenter registry study shows that CK-18 M30 measurement in isolation is of limited value for non-invasively diagnosing NASH.
Humans
;
Non-alcoholic Fatty Liver Disease/diagnosis*
;
Keratin-18
;
Biomarkers
;
Biopsy
;
Hepatocytes/pathology*
;
Apoptosis
;
Liver/pathology*
9.Pathophysiology of obesity and its associated diseases.
Xin JIN ; Tingting QIU ; Li LI ; Rilei YU ; Xiguang CHEN ; Changgui LI ; Christopher G PROUD ; Tao JIANG
Acta Pharmaceutica Sinica B 2023;13(6):2403-2424
The occurrence of obesity has increased across the whole world. Many epidemiological studies have indicated that obesity strongly contributes to the development of cancer, cardiovascular diseases, type 2 diabetes, liver diseases and other disorders, accounting for a heavy burden on the public and on health-care systems every year. Excess energy uptake induces adipocyte hypertrophy, hyperplasia and formation of visceral fat in other non-adipose tissues to evoke cardiovascular disease, liver diseases. Adipose tissue can also secrete adipokines and inflammatory cytokines to affect the local microenvironment, induce insulin resistance, hyperglycemia, and activate associated inflammatory signaling pathways. This further exacerbates the development and progression of obesity-associated diseases. Although some progress in the treatment of obesity has been achieved in preclinical and clinical studies, the progression and pathogenesis of obesity-induced diseases are complex and unclear. We still need to understand their links to better guide the treatment of obesity and associated diseases. In this review, we review the links between obesity and other diseases, with a view to improve the future management and treatment of obesity and its co-morbidities.
10.Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice.
Yumei LAI ; Wei ZHENG ; Minghao QU ; Christopher C XIAO ; Sheng CHEN ; Qing YAO ; Weiyuan GONG ; Chu TAO ; Qinnan YAN ; Peijun ZHANG ; Xiaohao WU ; Guozhi XIAO
International Journal of Oral Science 2022;14(1):33-33
The progressive destruction of condylar cartilage is a hallmark of the temporomandibular joint (TMJ) osteoarthritis (OA); however, its mechanism is incompletely understood. Here, we show that Kindlin-2, a key focal adhesion protein, is strongly detected in cells of mandibular condylar cartilage in mice. We find that genetic ablation of Kindlin-2 in aggrecan-expressing condylar chondrocytes induces multiple spontaneous osteoarthritic lesions, including progressive cartilage loss and deformation, surface fissures, and ectopic cartilage and bone formation in TMJ. Kindlin-2 loss significantly downregulates the expression of aggrecan, Col2a1 and Proteoglycan 4 (Prg4), all anabolic extracellular matrix proteins, and promotes catabolic metabolism in TMJ cartilage by inducing expression of Runx2 and Mmp13 in condylar chondrocytes. Kindlin-2 loss decreases TMJ chondrocyte proliferation in condylar cartilages. Furthermore, Kindlin-2 loss promotes the release of cytochrome c as well as caspase 3 activation, and accelerates chondrocyte apoptosis in vitro and TMJ. Collectively, these findings reveal a crucial role of Kindlin-2 in condylar chondrocytes to maintain TMJ homeostasis.
Aggrecans/metabolism*
;
Animals
;
Cartilage, Articular/metabolism*
;
Chondrocytes/pathology*
;
Cytoskeletal Proteins/metabolism*
;
Mice
;
Muscle Proteins/metabolism*
;
Osteoarthritis/pathology*
;
Temporomandibular Joint/pathology*

Result Analysis
Print
Save
E-mail