1.Detection of chondroitin sulfate in Cervi Cornu Pantotrichum and Cervi Cornu of different specifications and its application in quality evaluation.
Yu-Shun LU ; Yan-Ting ZHANG ; Zhi-Man LI ; Jian-Bo CHEN ; Xiao-Hui HUO ; Di QU ; Yin-Shi SUN
China Journal of Chinese Materia Medica 2022;47(19):5203-5208
The present study comprehensively compared the content of chondroitin sulfate in Cervi Cornu Pantotrichum(CCP) and Cervi Cornu(CC) of different specifications and explored the feasibility of chondroitin sulfate as an indicator to distinguish between CCP and CC. Twenty-two batches of CCP of different specifications(two-branched velvet antler and three-branched velvet antler) from 15 habitats, CC from 6 habitats, and 60 batches of CCP slices prepared from different parts(wax slices, powder slices, gauze slices, and bone slices) were collected. High-performance liquid chromatography(HPLC) was used to determine chondroitin sulfate content in CCP and CC of different specifications. Cluster analysis was used to classify CCP slices of different specifications. The results showed that CCP contained abundant chondroitin sulfate. The average content of chondroitin sulfate was 2.35 mg·g~(-1) in two-branched velvet antler and 1.79 mg·g~(-1) in three-branched velvet antler, significantly higher than 0.11 mg·g~(-1) in CC. Chondroitin sulfate content in wax slices, powder slices, gauze slices, and bone slices were 7.81, 8.39, 1.33, and 0.54 mg·g~(-1), respectively. Cluster analysis showed that gauze slices and bone slices could be clustered into one category and distinguished from wax slices and powder slices. CCP slices prepared from different parts could be separated well through chondroitin sulfate content. Based on the five principles of Q-marker selection, chondroitin sulfate can be used as a potential Q-marker for the identification of CCP and CC, as well as a potential quality indicator for CCP slices of different specifications(wax slices, powder slices, gauze slices, and bone slices). This research provides data support for CCP quality evaluation.
Animals
;
Cornus
;
Chondroitin Sulfates
;
Deer
;
Powders
;
Antlers
;
Gastropoda
2.Production and application of 3-phosphoadenosine-5- phosphosulfate.
Zhengxiong ZHOU ; Guocheng DU ; Zhen KANG
Chinese Journal of Biotechnology 2019;35(7):1222-1233
Sulfated compounds are widely present in cytoplasm, on cell surface, and in extracellular matrix. These compounds play important roles in cell development, differentiation, immune response, detoxication, and cell signal transduction. 3-Phosphoadenosine-5-phosphosulfate (PAPS) is the universal sulfate group donor for the biosynthesis of sulfated compounds. Up to now, the synthesis of PAPS is still too expensive for industrial applications. This review focuses on the recent progress of PAPS production and summaries the application of PAPS, particularly in the production of glucosinolate, heparin, condroitin sulfate, and oxamniquine production.
Cell Differentiation
;
Chondroitin Sulfates
;
Phosphoadenosine Phosphosulfate
;
metabolism
;
Sulfates
3.Hyaluronic acid has chondroprotective and joint-preserving effects on LPS-induced synovitis in horses
Henrique M NEUENSCHWANDER ; Juliana J MOREIRA ; Cynthia P VENDRUSCOLO ; Joice FÜLBER ; Sarah R T SEIDEL ; Yara M MICHELACCI ; Raquel Y A BACCARIN
Journal of Veterinary Science 2019;20(6):e67-
The intra-articular use of hyaluronic acid (HA) for the treatment of synovitis and osteoarthritis is still controversial. As a consequence, corticosteroids remain the most frequently employed therapeutic agents, despite their potential systemic and local deleterious effects. This study examined the anti-inflammatory, antioxidant, and chondroprotective activities of low and high molecular weight hyaluronic acid (LMW-HA and HMW-HA) on lipopolysaccharide (LPS)-induced synovitis in horses compared to triamcinolone acetonide (TA). LPS was injected in the metacarpophalangeal joints, which were treated intra-articularly with either TA (as control) or LMW-HA or HMW-HA. Joint clinical evaluation and synovial fluid (SF) analysis were performed at 0, 8, 24, and 48 h. The white blood cell counts (WBC), prostaglandin E2 (PGE2), interleukin (IL)-1, IL-6, IL-10, tumor necrosis factor-α, chondroitin sulfate (CS) and HA concentrations, oxidative burst, and HA molecular weights were measured. TA reduced the lameness, swelling, and PGE2 release but increased the SF CS concentrations enormously at 24h and 48h, and decreased the SF HA modal molecular weight. These results indicate the breakdown of articular cartilage aggrecan and SF HA. In contrast, LMW-HA and HMW-HA were less effective in reducing the inflammation symptoms, but preserved the joints because only a modest increase in CS occurred at 24 h, decreasing at 48 h, and the SF HA was maintained. The HA-treatment also had anti-inflammatory actions, and LMW-HA was the most effective in reducing the release of cytokine. In summary, the HA treatment inhibited efficiently the digestion of cartilage proteoglycans and SF HA breakdown.
Adrenal Cortex Hormones
;
Aggrecans
;
Cartilage
;
Cartilage, Articular
;
Chondroitin Sulfates
;
Digestion
;
Dinoprostone
;
Horses
;
Hyaluronic Acid
;
Inflammation
;
Interleukin-10
;
Interleukin-6
;
Interleukins
;
Joints
;
Leukocyte Count
;
Metacarpophalangeal Joint
;
Molecular Weight
;
Necrosis
;
Osteoarthritis
;
Proteoglycans
;
Respiratory Burst
;
Synovial Fluid
;
Synovitis
;
Triamcinolone
;
Triamcinolone Acetonide
4.Analysis of chondroitin sulfate content of Cervi Cornu Pantotrichum with different processing methods and different parts.
Rui-Ze GONG ; Yan-Hua WANG ; Yin-Shi SUN
China Journal of Chinese Materia Medica 2018;43(3):556-562
The differences and the variations of chondroitin sulfate content in different parts of Cervi Cornu Pantotrichum(CCP) with different processing methods were investigated. The chondroitin sulfate from velvet was extracted by dilute alkali-concentrated salt method. Next, the chondroitin sulfate was digested by chondroitinase ABC.The contents of total chondroitin sulfate and chondroitin sulfate A, B and C in the samples were determined by high performance liquid chromatography(HPLC).The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with freeze-drying processing is 14.13,11.99,1.74,0.32 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with boiling processing is 10.71,8.97,2.21,1.40 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP without blood is 12.47,9.47,2.64,0.07 g·kg⁻¹, respectively. And the content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with blood is 8.22,4.39,0.87,0.28 g·kg⁻¹ respectively. The results indicated that the chondroitin sulfate content in different processing methods was significantly different.The content of chondroitin sulfate in CCP with freeze-drying is higher than that in CCP with boiling processing.The content of chondroitin sulfate in CCP without blood is higher than that in CCP with blood. The chondroitin sulfate content in differerent paris of the velvet with the same processing methods was arranged from high to low as: wax slices, powder, gauze slices, bone slices.
Animals
;
Chondroitin Sulfates
;
analysis
;
Deer
;
Horns
;
chemistry
5.Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate–Gelatin Hydrogel for Tissue Engineering
Sumi BANG ; Ui Won JUNG ; Insup NOH
Tissue Engineering and Regenerative Medicine 2018;15(1):25-35
Novel hydrogel composed of both chondroitin sulfate (CS) and gelatin was developed for better cellular interaction through two step double crosslinking of N-(3-diethylpropyl)-N-ethylcarbodiimide hydrochloride (EDC) chemistries and then click chemistry. EDC chemistry was proceeded during grafting of amino acid dihydrazide (ADH) to carboxylic groups in CS and gelatin network in separate reactions, thus obtaining CS–ADH and gelatin–ADH, respectively. CS–acrylate and gelatin–TCEP was obtained through a second EDC chemistry of the unreacted free amines of CS–ADH and gelatin–ADH with acrylic acid and tri(carboxyethyl)phosphine (TCEP), respectively. In situ CS–gelatin hydrogel was obtained via click chemistry by simple mixing of aqueous solutions of both CS–acrylate and gelatin–TCEP. ATR-FTIR spectroscopy showed formation of the new chemical bonds between CS and gelatin in CS–gelatin hydrogel network. SEM demonstrated microporous structure of the hydrogel. Within serial precursor concentrations of the CS–gelatin hydrogels studied, they showed trends of the reaction rates of gelation, where the higher concentration, the quicker the gelation occurred. In vitro studies, including assessment of cell viability (live and dead assay), cytotoxicity, biocompatibility via direct contacts of the hydrogels with cells, as well as measurement of inflammatory responses, showed their excellent biocompatibility. Eventually, the test results verified a promising potency for further application of CS–gelatin hydrogel in many biomedical fields, including drug delivery and tissue engineering by mimicking extracellular matrix components of tissues such as collagen and CS in cartilage.
Amines
;
Cartilage
;
Cell Survival
;
Chemistry
;
Chondroitin Sulfates
;
Chondroitin
;
Click Chemistry
;
Collagen
;
Extracellular Matrix
;
Gelatin
;
Hydrogel
;
Hydrogels
;
In Vitro Techniques
;
Spectrum Analysis
;
Tissue Engineering
;
Transplants
6.Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy.
Zhu CHEN ; Shang DENG ; De-Chao YUAN ; Kang LIU ; Xiao-Cong XIANG ; Liang CHENG ; Dong-Qin XIAO ; Li DENG ; Gang FENG
Journal of Zhejiang University. Science. B 2018;19(12):910-923
OBJECTIVE:
To construct a novel non-viral vector loaded with growth and differentiation factor-5 (GDF-5) plasmid using chitosan, hyaluronic acid, and chondroitin sulfate for osteoarthritis (OA) gene therapy.
METHODS:
Nano-microspheres (NMPs) were prepared by mixing chitosan, hyaluronic acid, and chondroitin sulfate. GDF-5 plasmid was encapsulated in the NMPs through electrostatic adsorption. The basic characteristics of the NMPs were observed, and then they were co-cultured with chondrocytes to observe their effects on extracellular matrix (ECM) protein expression. Finally, NMPs loaded with GDF-5 were injected into the articular cavities of rabbits to observe their therapeutic effects on OA in vivo.
RESULTS:
NMPs exhibited good physicochemical properties and low cytotoxicity. Their average diameter was (0.61±0.20) μm, and encapsulation efficiency was (38.19±0.36)%. According to Cell Counting Kit-8 (CCK-8) assay, relative cell viability was 75%-99% when the total weight of NMPs was less than 560 μg. Transfection efficiency was (62.0±2.1)% in a liposome group, and (60.0±1.8)% in the NMP group. There was no significant difference between the two groups (P>0.05). Immunohistochemical staining results suggested that NMPs can successfully transfect chondrocytes and stimulate ECM protein expression in vitro. Compared with the control groups, the NMP group significantly promoted the expression of chondrocyte ECM in vivo (P<0.05), as shown by analysis of the biochemical composition of chondrocyte ECM. When NMPs were injected into OA model rabbits, the expression of ECM proteins in chondrocytes was significantly promoted and the progression of OA was slowed down.
CONCLUSIONS
Based on these data, we think that these NMPs with excellent physicochemical and biological properties could be promising non-viral vectors for OA gene therapy.
Animals
;
Cell Differentiation
;
Cell Survival/drug effects*
;
Chitosan/chemistry*
;
Chondrocytes/cytology*
;
Chondroitin Sulfates/chemistry*
;
Drug Carriers
;
Extracellular Matrix/metabolism*
;
Genetic Therapy/methods*
;
Growth Differentiation Factor 5/genetics*
;
Hyaluronic Acid/chemistry*
;
Microspheres
;
Nanomedicine
;
Osteoarthritis/therapy*
;
Plasmids/metabolism*
;
Rabbits
7.Histological, Physical Studies after Xenograft of Porcine Ear Cartilage.
Yong Ah RYU ; Meiying JIN ; Nakheon KANG
Archives of Craniofacial Surgery 2017;18(3):155-161
BACKGROUND: Because of the relatively similar size of organs to human and the physiological and structural similarities, the use of porcine as xenograft donors is progressing very actively. In this study, we analyzed the characteristics of porcine ear cartilage and evaluated its suitability as graft material in reconstructive and cosmetic surgery. METHODS: The auricular cartilage was harvested from two pigs, and subjected to histological examination by immunohistochemical staining. To determine the collagen content, samples were treated with collagenase and weight changes were measured. After sterilization by irradiation, the samples were grafted into rats and stained with Hematoxylin and Eosin and Masson Trichrome to observe inflammation and xenograft rejection. RESULTS: In IHC staining, extracellular matrices were mainly stained with type II collagen (20.69%), keratin sulfate (10.20%), chondroitin sulfate (2.62%), and hyaluronic acid (0.84%). After collagenase treatment, the weight decreased by 68.3%, indicating that about 70% of the porcine ear cartilage was composed of collagen. Upon xenograft of the sterilized cartilages in rats, inflammatory cells were observed for up to 2 months. However, they gradually decreased, and inflammation and reject-response were rarely observed at 5 months. CONCLUSION: The porcine ear cartilage was covered with perichondrium and cellular constituents were found to be composed of chondrocytes and chondroblasts. In addition, the extracellular matrices were mainly composed of collagen. Upon xenograft of irradiated cartilage into rats, there was no specific inflammatory reaction around the transplanted cartilage. These findings suggest that porcine ear cartilage could be a useful alternative implant material for human cosmetic surgery.
Animals
;
Cartilage
;
Chondrocytes
;
Chondroitin Sulfates
;
Collagen
;
Collagen Type II
;
Collagenases
;
Ear Cartilage*
;
Ear*
;
Eosine Yellowish-(YS)
;
Extracellular Matrix
;
Hematoxylin
;
Heterografts*
;
Humans
;
Hyaluronic Acid
;
Inflammation
;
Rats
;
Sterilization
;
Surgery, Plastic
;
Swine
;
Tissue Donors
;
Transplants
8.Pathomechanism of Interstitial Cystitis/Bladder Pain Syndrome and Mapping the Heterogeneity of Disease.
Jia Fong JHANG ; Hann Chorng KUO
International Neurourology Journal 2016;20(Suppl 2):S95-S104
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a heterogeneous syndrome which is usually characterized by urinary frequency, nocturia, and bladder pain. Several pathomechanisms have been proposed, including uroepithelial dysfunction, mast cell activation, neurogenic inflammation, autoimmunity, and occult urinary tract infections. It is possible that an inflammatory process alters regulation of urothelial homeostasis and results in dysfunction of the bladder epithelium. Different phenotypes of IC/BPS have been explored including Hunner and non-Hunner type IC, hypersensitive bladder, and bladder pain both with and without functional somatic syndrome. Different gene expressions have also been found in different IC phenotypes. Abnormal expressions of uroplakin, chondroitin sulfate and adhesive protein E-cadherin, tight junction protein zonula occludens-1 in IC/BPS bladder suggest abnormal epithelial differentiation in this bladder disease. Analysis of inflammatory proteins, or cytokines in the urine or serum provides another diagnostic foundation forIC/BPS subtypes. The involvement of IC/BPS in systemic functional somatic syndrome and other pelvic organ diseases might also subdivide subtypes of IC/BPS. Chronic inflammation, increased urothelial apoptosis, and abnormal urothelial function are closely associated in IC bladders. This article reviews recent research on the pathomechanisms of IC, which might help us in mapping the heterogeneity of the disease.
Adhesives
;
Apoptosis
;
Autoimmunity
;
Biomarkers
;
Cadherins
;
Chondroitin Sulfates
;
Cystitis
;
Cytokines
;
Epithelium
;
Gene Expression
;
Homeostasis
;
Inflammation
;
Lower Urinary Tract Symptoms
;
Mast Cells
;
Neurogenic Inflammation
;
Nocturia
;
Phenotype
;
Population Characteristics*
;
Tight Junctions
;
Urinary Bladder
;
Urinary Bladder Diseases
;
Urinary Tract Infections
;
Uroplakins
9.Intravesical Sodium Chondroitin Sulphate to Treat Overactive Bladder: Preliminary Result.
Lokman IRKILATA ; Mustafa AYDIN ; Hasan Riza AYDIN ; Huseyin CIHAN DEMIREL ; Mustafa KADIHASANOGLU ; Mustafa Kemal ATILLA
International Neurourology Journal 2015;19(2):85-89
PURPOSE: This study aimed to verify the efficacy and safety of intravesical treatment with sodium chondroitin sulfate (CS) in patients with overactive bladder (OAB) who are refractory to previous antimuscarinic treatment. METHODS: This study was performed between June 2012 and January 2015 and included 31 consecutive women (mean age, 42.10+/-7.34 years) with OAB who had been previously treated with two types of antimuscarinic drugs. The results of gynecologic and cystoscopic examinations were normal, and OAB comorbidity was absent. Treatment with intravesical instillations containing 40 mL CS (0.2%; 2 mg/mL) was administered for 6 weeks; after weekly treatments, monthly treatments were administered. The OAB-validated 8 (OAB-V8) symptom scores, nocturia, frequency, urgency, urge incontinence, and urinary volumes measured by uroflowmetry were evaluated for all the patients. The values obtained before the treatment were statistically compared with those obtained six months after the treatment. RESULTS: The duration of the symptoms was 18.36+/-6.19 months. A statistically significant improvement of the patients' conditions was observed in terms of the OAB-V8 symptom scores, nocturia, frequency, urgency, urge incontinence, and urinary volumes measured by uroflowmetry after the treatment. CONCLUSIONS: Despite the limitations of this study, the outcomes confirmed that CS therapy is safe and effective for the treatment of OAB.
Administration, Intravesical
;
Chondroitin Sulfates
;
Chondroitin*
;
Comorbidity
;
Female
;
Humans
;
Nocturia
;
Sodium*
;
Urinary Bladder, Overactive*
;
Urinary Incontinence, Urge
10.Nano-Se-chondroitin sulfate inhibits T-2 toxin-induced apoptosis of cultured chondrocytes from patients with Kashin-Beck disease.
Jing HAN ; Xiong GUO ; Cuiyan WU ; Chunyan LI ; Shulan HE ; Chen DUAN ; Yujie NING
Journal of Southern Medical University 2013;33(2):225-229
OBJECTIVETo observe the effect of nano-Se-chondroitin sulfate on the growth and apoptosis of chondrocytes from patients with Kashin-Beck disease (KBD) exposed to T-2 toxin in vitro.
METHODSSamples of the articular cartilage were obtained from 6 patients with grade II/III KBD diagnosed in line with the National Clinical Diagnostic Criteria of KBD (WS/T 207-2010) for chondrocyte separation and culture in vitro. The separated chondrocytes were treated with synthesized nano-Se-chondroitin sulfate particles and T-2 toxin, alone or in combination, and the cell growth and apoptosis were observed using MTT assay, HE staining and flow cytometry.
RESULTSThe synthesized nano-Se-chondroitin sulfate, with a selenium entrapment ratio of 10.1%, spontaneously formed nanoparticles in distilled water with sizes ranging from 30 to 200 nm. Fourier-transform infrared spectroscopy suggested a possible covalent bond that bound Nano-Se and chondroitin sulfate. Within the concentration range of 50-200 ng/ml, nano-Se-chondroitin sulfate significantly inhibited T-2 toxin-induced apoptosis of the cultured chondrocytes and reduced the early apoptosis rate to (8.64∓1.57)% (P<0.05).
CONCLUSIONNano-Se-chondroitin sulfate can inhibit T-2 toxin-induced apoptosis of cultured chondrocytes from KBD patients in vitro, and serves as a promising candidate therapeutic agent for KBD.
Apoptosis ; drug effects ; Cells, Cultured ; Chondrocytes ; drug effects ; pathology ; Chondroitin Sulfates ; administration & dosage ; pharmacology ; Humans ; Kashin-Beck Disease ; pathology ; Middle Aged ; Nanostructures ; T-2 Toxin ; toxicity

Result Analysis
Print
Save
E-mail