1.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
2.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
3.Effects of ginsenoside Rb_1 on liver FXR pathway and liver and fecal bile acid profiles in rats induced by high-fat diet based on targeted metabolomics.
Xue LENG ; Yang LI ; Qi WANG ; Xin-Tong LI ; Mei-Jun LYU ; Yan-Na SUN
China Journal of Chinese Materia Medica 2025;50(16):4649-4658
A targeted metabolomics study was conducted on the bile acid profiles in the liver and feces of rats induced by a high-fat diet and intervened by ginsenoside Rb_1, along with the detection of FXR pathway gene expression in the liver, to explore and clarify its mechanism of action. The content of biochemical indicators in the serum were detected using an automatic biochemical analyzer. Hematoxylin and eosin(HE) staining and oil red O staining were used to detect pathological changes and lipid deposition in the liver. RT-PCR was used to detect the mRNA expression of FXR, small heterodimer partner(SHP), cholesterol 7 alpha-hydroxylase(CYP7A1), and sterol regulatory element-binding protein-1c(SREBP-1c) in the liver. Targeted bile acid metabolomics technology was employed to analyze changes in bile acid profiles in liver tissue and feces, and a correlation analysis was performed between key genes such as FXR, SHP, CYP7A1, SREBP-1c and differential bile acid metabolites. The results showed that ginsenoside Rb_1 significantly reduced the levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and high-density lipoprotein cholesterol(HDL-C) in the serum, alleviated the large fat vacuoles and lipid deposition in the liver, increased the expression of FXR mRNA in the liver, and decreased the expression of SREBP-1c mRNA. The expression of CYP7A1 and SHP mRNA was increased, but the differences were not statistically significant. Targeted bile acid metabolomics showed that ginsenoside Rb_1 could restore the levels of 9 bile acids in the liver and 8 bile acids in the feces. Ginsenoside Rb_1 also increased the percentage of taurocholic acid(TCA) in the liver(56.78%) and the percentage of 12-ketolithocholic acid(12-KLCA) in the feces(26.10%). Pathway enrichment analysis revealed two pathways involved in bile acid metabolism: primary bile acid biosynthesis and taurine and hypotaurine metabolism. Correlation analysis showed that FXR, SHP, CYP7A1, and SREBP-1c were positively correlated with multiple differential bile acids. These results suggest that ginsenoside Rb_1 may intervene in lipid metabolism disorders induced by a high-fat diet by regulating the FXR pathway and modulating bile acid profiles in the liver and feces.
Animals
;
Bile Acids and Salts/metabolism*
;
Rats
;
Ginsenosides/pharmacology*
;
Male
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Liver/drug effects*
;
Diet, High-Fat/adverse effects*
;
Metabolomics
;
Rats, Sprague-Dawley
;
Feces/chemistry*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Sterol Regulatory Element Binding Protein 1/genetics*
;
Humans
4.Association between metabolic parameters and erection in erectile dysfunction patients with hyperuricemia.
Guo-Wei DU ; Pei-Ning NIU ; Zhao-Xu YANG ; Xing-Hao ZHANG ; Jin-Chen HE ; Tao LIU ; Yan XU ; Jian-Huai CHEN ; Yun CHEN
Asian Journal of Andrology 2025;27(4):482-487
The relationship between hyperuricemia (HUA) and erectile dysfunction (ED) remains inadequately understood. Given that HUA is often associated with various metabolic disorders, this study aims to explore the multivariate linear impacts of metabolic parameters on erectile function in ED patients with HUA. A cross-sectional analysis was conducted involving 514 ED patients with HUA in the Department of Andrology, Jiangsu Province Hospital of Chinese Medicine (Nanjing, China), aged 18 to 60 years. General demographic information, medical history, and laboratory results were collected to assess metabolic disturbances. Sexual function was evaluated using the 5-item version of the International Index of Erectile Function (IIEF-5) questionnaire. Based on univariate analysis, variables associated with IIEF-5 scores were identified, and the correlations between them were evaluated. The effects of these variables on IIEF-5 scores were further explored by multiple linear regression models. Fasting plasma glucose ( β = -0.628, P < 0.001), uric acid ( β = -0.552, P < 0.001), triglycerides ( β = -0.088, P = 0.047), low-density lipoprotein cholesterol ( β = -0.164, P = 0.027), glycated hemoglobin (HbA1c; β = -0.562, P = 0.012), and smoking history ( β = -0.074, P = 0.037) exhibited significant negative impacts on erectile function. The coefficient of determination ( R ²) for the model was 0.239, and the adjusted R ² was 0.230, indicating overall statistical significance ( F -statistic = 26.52, P < 0.001). Metabolic parameters play a crucial role in the development of ED. Maintaining normal metabolic indices may aid in the prevention and improvement of erectile function in ED patients with HUA.
Humans
;
Male
;
Erectile Dysfunction/metabolism*
;
Hyperuricemia/metabolism*
;
Adult
;
Middle Aged
;
Cross-Sectional Studies
;
Glycated Hemoglobin/metabolism*
;
Blood Glucose/metabolism*
;
Uric Acid/blood*
;
Young Adult
;
Triglycerides/blood*
;
Adolescent
;
Cholesterol, LDL/blood*
;
Penile Erection/physiology*
;
Surveys and Questionnaires
5.Wendan Decoction ameliorates metabolic phenotypes in rats with metabolic syndrome and phlegm syndrome by modulating the gut microbiota-bile acid axis.
Kaiyue HUANG ; Jingxin QI ; Wenqian LUO ; Yixuan LIN ; Meimei CHEN ; Huijuan GAN
Journal of Southern Medical University 2025;45(6):1174-1184
OBJECTIVES:
To investigate the therapeutic mechanism of Wendan Decoction for phlegm syndrome in rats with metabolic syndrome (MS).
METHODS:
Forty Wistar rats were randomly divided into normal control group (n=8) and 3 phlegm syndrome model groups (induced by high-fat, high-sugar, and high-salt feeding and a single-dose intraperitoneal STZ injection; n=24) treated with daily gavage of saline, Wendan Decoction (3.6 g/kg), or metformin (0.1 g/kg) for 4 weeks. General conditions and glucose and lipid metabolism parameters of the rats were monitored, and serum LPS, liver histopathology, hepatic expressions of FXR, CYP7A1 and FGFR4 and ileal expressions of FXR and FGF15 were examined. Gut microbiota structure was analyzed using 16S rDNA sequencing, and serum bile acids were quantified with UHPLC-MS/MS.
RESULTS:
The rat models of phlegm syndrome exhibited severe hepatic steatosis and necrosis, increased body weight, abdominal circumference, Lee's index, FBG, FINS, HOMA-IR, TG, TC, LDL and LPS, and decreased HDL level. The abundance of Bacteroidetes, Megamonas, and Bacteroides in gut microbiota increased while Firmicutes, Lachnospiraceae_NK4A136_group, isohyodeoxycholic acid, and glycohyodeoxycholic acid decreased significantly; hepatic FXR and FGFR4 expressions and ileal FXR and FGF15 expressions decreased while hepatic CYP7A1 expression increased significantly in the rat models. Treatment with Wendan Decoction effectively alleviated hepatic pathology, reduced body weight and abdominal circumference, improved glucose and lipid metabolic profiles and gut microbiota structure, and reversed the changes in hepatic and ileal protein expressions. Correlation analysis revealed that Firmicutes and Lachnospiraceae_NK4A136_group were positively correlated while Bacteroidetes, Megamonas and Bacteroides were negative correlated with the levels of isohyodeoxycholic acid and hyodeoxycholic acid.
CONCLUSIONS
Wendan Decoction can significantly improve metabolic profiles in rats with phlegm syndrome of MS possibly by regulating the intestinal flora-bile acid axis to modulate the intestinal flora structure and maintain bile acid homeostasis via the FXR signaling pathway.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Metabolic Syndrome/microbiology*
;
Bile Acids and Salts/metabolism*
;
Rats, Wistar
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats
;
Male
;
Fibroblast Growth Factors/metabolism*
;
Liver/metabolism*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Receptors, Cytoplasmic and Nuclear/metabolism*
6.Disrupting atherosclerotic plaque formation via the "qi meridian-blood channel": mechanism of Jiangzhi Huaban Decoction for regulating hepatic reverse cholesterol transport to improve atherosclerosis.
Hongyang WANG ; Wenyi ZHU ; Xushen CHEN ; Tong ZHANG ; Zhiwei CAO ; Jin WANG ; Bo XIE ; Qiang LIU ; Xuefeng REN
Journal of Southern Medical University 2025;45(9):1818-1829
OBJECTIVES:
To explore the molecular mechanism of Jiangzhi Huaban Decoction (JZHBD) for improving atherosclerosis through the "qi meridian-blood channels" pathway.
METHODS:
ApoE-/- mouse models of atherosclerosis were established by high-fat diet feeding for 8 weeks, with C57BL/6 mice on a normal diet as the controls. Forty ApoE-/- mouse models were randomized into model group, low-, medium-, and high-dose JZHBD treatment groups, and atorvastatin treatment group (n=8) for their respective treatments for 8 weeks. The changes in body weight and overall condition of the mice were monitored weekly. After the treatments, serum levels of TC, TG, HDL-C, LDL-C, TBA, ALT, and AST of the mice were measured, pathological changes in the liver and aortic root plaques were examined with HE staining, and lipid accumulation in the liver and aortic wall was assessed using Oil Red O staining. The core molecular mechanism was studied through transcriptomics, and the expressions of the key pathway proteins were confirmed using Western blotting and immunohistochemistry.
RESULTS:
Treatment with JZHBD significantly reduced blood lipid and total bile acid levels, improved liver function and hepatic steatosis, and decreased aortic lipid deposition and plaque area in the mouse models of atherosclerosis. Transcriptomic analysis suggested that the therapeutic mechanism of JZHBD involved reverse cholesterol transport, PPAR signaling, and the inflammatory pathways. In atherosclerotic mice, JZHBD treatment obviously up-regulated hepatic expressions of PPARγ, LXRα, ABCA1, ABCG1, and CYP7A1, down-regulated hepatic expressions of p-p65/p65, IL-6, IL1β in the liver, increased ABCG5 and ABCG8 expressions in the intestines, and decreased ICAM-1 and VCAM-1 expressions in the aortic plaques.
CONCLUSIONS
JZHBD improves atherosclerotic vascular damage and plaque formation possibly by regulating hepatic reverse cholesterol transport and inflammation via modulating the hepatic PPARγ/LXRα/NF-κB signaling pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Inbred C57BL
;
Plaque, Atherosclerotic/metabolism*
;
Liver/metabolism*
;
Mice
;
Atherosclerosis/metabolism*
;
Cholesterol/metabolism*
;
PPAR gamma/metabolism*
;
Male
;
Diet, High-Fat
;
Biological Transport
7.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
8.Mechanism of Buyang Huanwu Decoction glycosides against atherosclerotic inflammation through NF-κB signaling pathway.
Xin-Ying FU ; Zheng-Ji SUN ; Qing-Yin LONG ; Wei TAN ; Yan-Jun LI ; Lu WU ; Qing-Hu HE ; Wei ZHANG
China Journal of Chinese Materia Medica 2023;48(1):202-210
This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.
Mice
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Glycosides/pharmacology*
;
Cholesterol, LDL
;
Atherosclerosis/genetics*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Interleukin-6
;
Apolipoproteins E/pharmacology*
;
RNA, Messenger/metabolism*
9.Rosuvastatin acts on the lymphatic system to improve atherosclerosis.
Zi Qi SONG ; Jun Xian SONG ; Yu Xia CUI ; Su Fang LI ; Hong CHEN
Chinese Journal of Cardiology 2023;51(3):288-295
Objective: To investigate whether rosuvastatin acts on lymphatic system and influences lymphatic system-mediated reverse cholesterol transport to play an anti-atherosclerosis role. Methods: Forty-eight apolipoprotein E-/- mice fed a high fat diet were used to construct the atherosclerosis model. They were randomly divided into 4 groups with 12 rats in each group. They were treated with rosuvastatin, vascular endothelial growth factor-C (VEGF-C) and rosuvastatin+VEGF-C inhibitors as experimental group, and no intervention measures were given in control group. After 8 weeks, aortic plaque area, high density lipoprotein cholesterol (HDL-C) content in lymph fluid, the function of popliteal lymphatic drainage of peripheral Evans blue, and the ability of lymphatic system to transport peripheral cell membrane red fluorescent probes to label high-density lipoprotein (HDL) were detected. Subsequently, the effects of rosuvastatin on proliferation, migration and tubular function of lymphoendothelial cells and the expression of scavenger receptor class B type 1 (SR-B1) on lymphoendothelial cells at different concentrations were detected. Results: Compared with the control group, Rosuvastatin and VEGF-C could reduce the area of aortic atherosclerotic plaque (P<0.05). In addition to rosuvastatin plus VEGF-C inhibitor, the intra-aortic plaque area increased (P<0.05). Compared with the control group, Rosuvastatin could increase the content of HDL-C in lymphatic fluid (P<0.05), enhance the drainage function of lymphatic vessels, and enhance the capacity of HDL in the transport tissue fluid of lymphatic system. Compared with the control group, VEGF-C increased the content of HDL-C in mouse lymph fluid (P<0.01), enhanced the drainage function of popliteal lymphatic canal, and enhanced the ability of lymphatic system to transport HDL. With the addition of VEGF-C inhibitor on the basis of rosuvastatin, the content of HDL-C in lymph fluid was reduced, the drainage of popliteal lymphatic canal was interrupted, and the ability of lymphatic system to transport HDL was reduced. Western blotting showed that rosuvastatin increased the protein expression of SR-B1. Conclusion: Rosuvastatin can promote the proliferation, migration and tube formation of lymphatic endothelial cells. At the same time, SR-B1 expression on lymphatic endothelial cells is promoted, thus enhancing the lymphatic system mediated cholesterol reversal transport and playing the role of anti-atherosclerosis.
Rats
;
Mice
;
Animals
;
Rosuvastatin Calcium/therapeutic use*
;
Vascular Endothelial Growth Factor C
;
Endothelial Cells/metabolism*
;
Atherosclerosis/drug therapy*
;
Plaque, Atherosclerotic
;
Cholesterol, HDL
;
Lymphatic System/metabolism*
10.S-propargyl-cysteine delays the progression of atherosclerosis and increases eNOS phosphorylation in endothelial cells.
Zhi-Ming LI ; Ping LI ; Lei ZHU ; Yu-Wen ZHANG ; Yi-Chun ZHU ; He WANG ; Bo YU ; Ming-Jie WANG
Acta Physiologica Sinica 2023;75(3):317-327
The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 μmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.
Animals
;
Humans
;
Mice
;
Atherosclerosis
;
Cholesterol/metabolism*
;
Cysteine/pharmacology*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Plaque, Atherosclerotic/pathology*

Result Analysis
Print
Save
E-mail