1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.
7.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.
8.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.
9.Effects of Codeine on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility:Studies Using High-resolution Manometry
Wei-Yi LEI ; Tso-Tsai LIU ; Wei-Chuan CHANG ; Chih-Hsun YI ; Jui-Sheng HUNG ; Ming-Wun WONG ; Shu-Wei LIANG ; Lin LIN ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(1):38-45
Background/Aims:
This study aims to evaluate the effects of acute codeine administration on primary and secondary esophageal peristalsis in patients with ineffective esophageal motility (IEM).
Methods:
Eighteen IEM patients (8 women; mean age 37.8 years, range 23-64 years) were enrolled in the study. The patients underwent highresolution manometry exams, consisting of 10 single wet swallows, multiple rapid swallows, and ten 20 mL rapid air injections to trigger secondary peristalsis. All participants completed 2 separate sessions, including acute administration of codeine (60 mg) and placebo, in a randomized order.
Results:
Codeine significantly increased the distal contractile integral (566 ± 81 mmHg · s · cm vs 247 ± 36 mmHg · s · cm, P = 0.001) andshortened distal latency (5.7 ± 0.2 seconds vs 6.5 ± 0.1 seconds, P < 0.001) for primary peristalsis compared with these parameters after placebo treatment. The mean total break length decreased significantly after codeine treatment compared with the length after placebo (P= 0.003). Codeine significantly increased esophagogastric junction-contractile integral (P= 0.028) but did not change the 4-second integrated relaxation pressure (P= 0.794). Codeine significantly decreased the frequency of weak (P= 0.039) and failed contractions (P= 0.009), resulting in increased frequency of normal primary peristalsis (P < 0.136). No significant differences in the ratio of impaired multiple rapid swallows inhibition and parameters of secondary peristalsis were detected.
Conclusions
In IEM patients, acute administration of codeine increases contraction vigor and reduces distal latency of primary esophageal peristalsis, but has no effect on secondary peristalsis. Future studies are required to further elucidate clinical relevance of these findings, especially in the setting of gastroesophageal reflux disease with IEM.
10.Impact of Esophageal Motility on Microbiome Alterations in Symptomatic Gastroesophageal Reflux Disease Patients With Negative Endoscopy: Exploring the Role of Ineffective Esophageal Motility and Contraction Reserve
Ming-Wun WONG ; I-Hsuan LO ; Wei-Kai WU ; Po-Yu LIU ; Yu-Tang YANG ; Chun-Yao CHEN ; Ming-Shiang WU ; Sunny H WONG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Jui-Sheng HUNG ; Shu-Wei LIANG ; C Prakash GYAWALI ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(3):332-342
Background/Aims:
Ineffective esophageal motility (IEM) is common in patients with gastroesophageal reflux disease (GERD) and can be associated with poor esophageal contraction reserve on multiple rapid swallows. Alterations in the esophageal microbiome have been reported in GERD, but the relationship to presence or absence of contraction reserve in IEM patients has not been evaluated. We aim to investigate whether contraction reserve influences esophageal microbiome alterations in patients with GERD and IEM.
Methods:
We prospectively enrolled GERD patients with normal endoscopy and evaluated esophageal motility and contraction reserve with multiple rapid swallows during high-resolution manometry. The esophageal mucosa was biopsied for DNA extraction and 16S ribosomal RNA gene V3-V4 (Illumina)/full-length (Pacbio) amplicon sequencing analysis.
Results:
Among the 56 recruited patients, 20 had normal motility (NM), 19 had IEM with contraction reserve (IEM-R), and 17 had IEM without contraction reserve (IEM-NR). Esophageal microbiome analysis showed a significant decrease in microbial richness in patients with IEM-NR when compared to NM. The beta diversity revealed different microbiome profiles between patients with NM or IEM-R and IEM-NR (P = 0.037). Several esophageal bacterial taxa were characteristic in patients with IEM-NR, including reduced Prevotella spp.and Veillonella dispar, and enriched Fusobacterium nucleatum. In a microbiome-based random forest model for predicting IEM-NR, an area under the receiver operating characteristic curve of 0.81 was yielded.
Conclusions
In symptomatic GERD patients with normal endoscopic findings, the esophageal microbiome differs based on contraction reserve among IEM. Absent contraction reserve appears to alter the physiology and microbiota of the esophagus.

Result Analysis
Print
Save
E-mail