1.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
2.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
3.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
4.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
5.Medium- and long-term efficacy of percutaneous mechanical thrombectomy with stent implantation in patients with iliac vein stenosis and thrombosis.
Chunlun CHEN ; Chenyang QIU ; Lan SHEN ; Renda ZHU ; Huaji ZHOU ; Hongkun ZHANG
Journal of Zhejiang University. Medical sciences 2025;54(1):108-114
OBJECTIVES:
To investigate the medium- and long-term efficacy of percutaneous mechanical thrombectomy (PMT) combined with stent implantation for treatment of iliac vein stenosis with lower extremity deep venous thrombosis (LEDVT).
METHODS:
Clinical and follow-up data of 125 patients with iliac vein stenosis and LEDVT who underwent PMT and stent implantation at five hospitals in northern Zhejiang province from January 2017 to June 2021 were collected. The thrombus clearance rate, thrombus recurrence rate, patency rate of iliac vein stents and post-thrombotic syndrome (PTS) occurrence rate were documented, and safety indicators such as bleeding, death, pulmonary embolism, stent fracture and displacement were assessed.
RESULTS:
Among 125 patients, for clearance of limb thrombosis, there were 8 cases of grade I (6.4%), 10 cases of grade II (8.0%), and 107 cases of grade III (85.6%). Patients were followed up for a median period of 74 months. According to the Villalta score, the recurrence rates of limb thrombosis at 12, 24 and 36 months were 8.48%, 8.93% and 10.91%; the iliac vein patency rates were 91.52%, 91.07%, and 89.09%; and the incidences of PTS were 5.08%, 5.36% and 6.36%, respectively. There were no major adverse events such as death, massive pulmonary embolism or severe hepatic and renal insufficiency, and no readmission intervention events due to stent fracture or other incidence were found.
CONCLUSIONS
PMT combined with iliac vein stent implantation is effective for patients with iliac vein stenosis complicated by LEDVT with good medium- and long-term efficacy and safety, which is worthy of clinical application.
Humans
;
Stents
;
Iliac Vein/pathology*
;
Venous Thrombosis/surgery*
;
Thrombectomy/methods*
;
Female
;
Male
;
Middle Aged
;
Aged
;
Adult
;
Constriction, Pathologic/surgery*
;
Treatment Outcome
;
Follow-Up Studies
6.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
7.Identification and Analysis of NnOMT and NnNMT Gene Families in Nelumbo nucifera
Zhuyin CHEN ; Yuetong YU ; Chenyang HAO ; Mingru LIU ; Sha CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):152-160
ObjectiveThe biosynthetic pathways of benzylisoquinoline alkaloids(BIAs) in Nelumbo nucifera are of great theoretical and economic value. In this paper, N. nucifera O-methyltransferase(NnOMT) and N. nucifera N-methyltransferase(NnNMT) gene families were identified and analyzed by bioinformatics in order to facilitate the biosynthetic pathway of BIAs in N. nucifera. MethodBased on the whole genome of N. nucifera, UniPort and National Center for Biotechnology Information(NCBI) databases were used to identify the NnOMT and NnNMT gene families of N. nucifera, and analyze their physicochemical properties and subcellular localization, then TBtools, MEME, MEGA 11.0, FigTree 1.4.4 and other tools were used to analyze the phylogeny, sequence characteristics, gene structure, functional annotation and cis-acting elements of NnOMT and NnNMT genes identified in the previous stage. ResultA total of 61 NnOMT and NnNMT genes were identified in this paper, the number of amino acids encoded by these genes ranged from 168 aa to 580 aa, the isoelectric point ranged from 4.76 to 9.16, and the relative molecular weight ranged from 18 699.52 Da to 64 934.53 Da, most of which showed acidic and mostly hydrophilic proteins. There were 10 conserved motifs, Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis enriched a total of 12 pathways, including metabolism, biosynthesis of phenylpropane and isoquinoline alkaloids, etc. And Visualization of Gene Ontology(GO) enrichment results showed that 61 NnOMT and NnNMT genes were annotated to 32 items, which included 16 molecular functions[such as reduced nicotinamide adenine dinucleotide(NADH) activity and exopeptidase activity] and 16 biological processes(such as metabolic process of carbon tetrachloride, anaerobic carbon tetrachloride metabolic process and responses to exogenous biological stimuli). There were a variety of cis-acting elements in the promoter regions of NnOMT and NnNMT genes, mainly promoter and enhancer regions element, light responsive element and methyl jasmonate responsive element. ConclusionIn this study, a comprehensive bioinformatics analysis of 61 NnOMT and NnNMT genes is carried out based on the genome data of N. nucifera, which lays a foundation for research on the gene structure and function of NnOMT and NnNMT gene families, and provides a reference for biosynthetic pathway elucidation of BIAs in N. nucifera.
8.Advances in application of EEG-fNIRS technology in researches on neuropsychiatric disorders
Chenyang GAO ; Kai WU ; Wenhao LI ; Yi LI ; Zhile JIANG ; Yuxin WANG ; Wenrui CHEN ; Jing ZHOU
Chinese Journal of Medical Physics 2024;41(3):348-355
Currently,electroencephalogram(EEG),functional near-infrared spectroscopy(fNIRS),and functional magnetic resonance imaging have been widely studied and applied to neuropsychiatric disorders.In recent years,the devices which can realize the simultaneous acquisition of EEG and fNIRS has been developed and gradually applied in the studies on neuropsychiatric disorders.The review provides an introduction of the techniques of synchronized detection and data analysis for EEG-fNIRS,summarizes the analysis methods and new findings of the recent studies of stroke,epilepsy,and other neuropsychiatric disorders using EEG-fNIRS,and also discusses the future research directions.
9.Construction of double-layer bone-on-a-chip containing bone matrix
Hao ZHANG ; Chenyang ZHOU ; Yan HU ; Xiao CHEN ; Xiaolin WANG ; Jiacan SU
Chinese Journal of Trauma 2024;40(1):20-28
Objective:To construct a double-layer bone-on-a-chip containing bone matrix, with which the process of osteoblast and osteoclast differentiation in vitro is stimulated, aiming to provide a new platform for the development of osteoporosis medications. Methods:Software WorkSoild was used to design the double-layer and double-channel bone-on-a-chip and the template was fabricated by photolithography. With polydimethylsiloxane (PDMS) as the raw material, the main body of the chip was prepared by mold fabrication. The inlets and outlets of the four channels of the culture room were separated with bovine cortex bones and sealed with liquid storage columns. In the chip verification experiment, chips were divided into osteogenic and osteoclastic induction groups and osteogenic and osteoclastic control groups. In the osteogenic and osteoclastic induction groups, precursor cells of mouse embryonic osteoblast, MC3T3-E1 and mouse macrophage RAW264.7 were inoculated on the chip separately. Osteogenic induction lasted 14 days and osteoclastic induction 7 days. MC3T3-E1 cells and RAW264.7 cells were not induced in the osteogenic and osteoclastic control groups. The following indicators were observed: (1) Appearance and sealing performance of the chip: After the chip was prepared, photos were taken to observe its appearance and sealing tests were conducted to observe its sealing performance. (2) Biocompatibility: At 3 days after MC3T3-E1 cells were inoculated onto the chip and cultured and at 1, 3 and 5 days after RAW264.7 cells were inoculated onto the chip and cultured, the cell survival was observed with calcein acetoxymethyl ester/propidium iodide (AM/PI) staining and Cell Counting Kit 8 (CCK-8). (3) Osteogenic differentiation: Alkaline phosphatase (ALP) staining and alizarin red staining were performed on the cells in the osteogenic induction group to observe the osteogenic induction. RNA was collected from the osteogenic induction group and the osteogenic control group, the expression of osteoblast marker Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and type I collagen (COL1A1) was detected by real-time florescent quantitative PCR (qPCR), and the differentiation degree and osteogenic ability of osteoblasts were observed. (4) Osteoclast differentiation: tartrate-resistant acid phosphatase (TRAP) staining was performed on cells in the osteoclastic induction group to observe osteoclast differentiation. RNA was extracted from the osteoclastic induction group and the osteoclastic control group for qPCR of osteoclast differentiation-related genes, and the expression levels of the osteoclast marker gene TRAP, cathepsin K (CTSK) and dendritic cell specific transmembrane protein (DC-STAMP) were detected.Results:The double-layer bone-on-a-chip containing bone matrix was 3 cm×3 cm in size and transparent as a whole. The structure of the system on the chip system was compact and had no seepage. It was shown by calcein AM/PI staining that at 3 days after MC3T3-E1 cells and RAW264.7 cells were cultured, very few red fluorescent dead cells were found. CCK-8 test showed that within 5 days after being cultured, the cell viability was all above 90%, indicating that the biocompatibility of the chip was good and the cells could survive and proliferate normally. The results of ALP and alizarin red staining showed that MC3T3-E1 cells successfully differentiated into osteoblasts and produced calcified nodules in the osteogenic induction group at 14 days after the induction. The qPCR results showed that the relative expression level of RUNX2 in MC3T3-E1 cells in the osteogenic induction group was 4.98±0.74, which was significantly higher than that of the control group (0.99±0.03) ( P<0.01). The relative expression level of OCN in MC3T3-E1 cells was 7.98±0.76, which was significantly higher than that of the control group (1.00±0.06) ( P<0.01). The relative expression level of COL1A1 in MC3T3-E1 cells was 7.07±0.56, which was significantly higher than that of the control group (0.97±0.03) ( P<0.01). The TRAP staining results showed that the RAW264.7 cells in the osteoclastic induction group differentiated to giant multinucleated osteoclasts, and TRAP protein was expressed in large quantity in the osteoclasts. The results of qPCR showed that the relative expression level of TRAP in RAW264.7 cells in the osteoclastic induction group was 3.35±0.37, which was significantly higher than that of the control group (1.01±0.06) ( P<0.01). The relative expression level of CTSK in RAW264.7 cells was 3.46±0.79, which was significantly higher than that of the control group (1.01±0.05) ( P<0.01). The relative expression level of DC-STAMP in RAW264.7 cells was 1.92±0.12, which was significantly higher than that of the control group (0.98±0.08) ( P<0.01). Conclusions:The double-layer bone-on-a-chip containing bone matrix is compact in structure, can be cultured in vitro for a long time, has good biocompatibility and can be used for inducing osteogenic and osteoclast differentiation. Therefore, it is expected to provide a new research platform for exploring the mechanism of osteoporosis and medication screening.
10.Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor
Qi CHEN ; Chenyang XU ; Yin WANG ; Dapeng LEI
Journal of International Oncology 2024;51(5):298-302
Head and neck tumor is a common malignant tumor with increasing incidence and mortality worldwide. Traditional diagnostic methods for head and neck tumor are limited by the lack of specific biomarkers and the limitation of invasive detection methods, as well as high time cost and a high rate of misdiagnosis. Therefore, research on head and neck tumor diagnosis based on new technologies is needed. Hyperspectral imaging (HSI) is a non-contact optical imaging technique that captures a series of images in multiple spectral bands to generate a hyperspectral image cube. HSI has shown its corresponding potential in the early diagnosis, tumor margin identification and clinical research of head and neck cancer.

Result Analysis
Print
Save
E-mail