1.Treating diabetic kidney disease based on "using bitter herbs to nourish or purge" theory
Weimin JIANG ; Yaoxian WANG ; Shuwu WEI ; Jiale ZHANG ; Chenhui XIA ; Jie YANG ; Liqiao SUN ; Xinrong LI ; Weiwei SUN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):1-7
The Huangdi Neijing proposes the " using bitter herbs to nourish or purge" theory to guide clinical prescription and formulation of herbal remedies based on the physiological characteristics and functions of the five zang viscera, along with the properties and flavors of medicinal herbs. This study explored diabetic kidney disease pathogenesis and treatment based on the " using bitter herbs to nourish or purge" theory. Kidney dryness is a key pathological factor in diabetic kidney disease, and the disharmony of kidney dryness is an essential aspect of its pathogenesis. Strengthening is the primary therapeutic principle, and kidney dryness is a persistent factor throughout the occurrence and progression of diabetic kidney disease. In the early stage, the pathogenesis involves heat-consuming qi and injuring yin, leading to kidney dryness. In the middle stage, the pathogenesis manifests as qi deficiency and blood stasis in the collaterals, resulting in turbidity owing to kidney dryness. In the late stage, the pathogenesis involves yin and yang deficiency, with kidney dryness and disharmony. This study proposes the staging-based treatment based on the " need for firmness" characteristic of the kidney. The aim is to provide new insights for clinical diagnosis and treatment in traditional Chinese medicine by rationally using pungent, bitter, and salty medicinal herbs to nourish and moisturize the kidney. This approach seeks to promote precise syndrome differentiation and personalized treatment for different stages of diabetic kidney disease, thereby enhancing clinical efficacy.
2.Effects of Different Microbial Fertilizers on Physiology and Rhizosphere Soil Environment of Codonopsis pilosula
Xia JIANG ; Junxi ZHAO ; Panpan SHI ; Xiaoxuan WANG ; Chenhui DU ; Shuosheng ZHANG ; Haixian ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):241-251
ObjectiveTo study the effects of applying different microbial fertilizers on the growth and rhizosphere soil environment of Codonopsis pilosula and provide a theoretical basis for ecological cultivation of this medicinal plant. MethodsSeven groups were designed, including CK (no application of microbial fertilizer), T1 (Trichoderma longibrachiatum fertilizer), T2 (Bacillus subtilis fertilizer), T3 (Trichoderma viride fertilizer), T4 (compound microbial fertilizer), T5 (C. pilosula stems and leaves fermented with compound microbial fertilizer), and T6 (Scutellaria baicalensis stems and leaves fermented with T. viride fertilizer). The physiological indicators, yield, and quality of C. pilosula and the physicochemical properties, enzyme activities, and microbial diversity in the rhizosphere soil of different fertilizer treatments were measured. ResultsGroup T1 showed slight decreases in soluble protein content (SPC) and superoxide dismutase (SOD). Groups T2-T6 showed increases in physiological indicators such as proline (Pro), soluble solids content (SSC), SPC, catalase (CAT), and peroxidase (POD) and a decrease in malondialdehyde (MDA) in C. pilosula leaves. All the fertilizer treatments increased the yield of C. pilosula and the total polysaccharide content in the roots. T1, T2, T3, T4, and T5 increased the total flavonoid content in the roots. Meanwhile, T4 increased the total saponin content in the roots. All the fertilizer treatments reduced the pH and increased the electric conductivity (EC), soil organic matter (SOM), and alkaline nitrogen (AN) in the soil. T2 and T5 increased the available phosphorus (AP), and T3, T4, T5, and T6 increased the available potassium (AK) in the soil. All the fertilizer treatments increased the activities of urease, sucrase, and CAT in the soil. Except that T1 decreased the bacterial diversity in the soil, other fertilizer treatments significantly increased bacterial and fungal diversity in the soil. Different fertilizer treatments significantly affected the composition of bacterial and fungal communities in the soil. At the phylum level, the dominant bacterial phyla included Proteobacteria, Acidobacteriota, and Bacteroideta, and the dominant fungal phyla were Ascomycota, Mortierellomycota, and unclassified_fungi in the rhizosphere soil of C. pilosula after bacterial fertilizer treatment. At the genus level, unclassified Gemmatimonadaceae, Sphingomonas, and unclassified Vicinamibacteraceae were the dominant bacterial genera, while unidentified, unclassified Fungi, and unclassified Sordariomycetes were the dominant fungal genera in the rhizosphere soil. The results of redundancy analysis indicated that the main physicochemical factors affecting changes of microbial communities in the rhizosphere soil of C. pilosula were pH, EC, AK, AN, AP, and soil organic matter (SOM) in the soil. The correlation heatmap showed that Bryobacter had significantly positive correlations with EC, AK, and AN. There was a significantly negative correlation between Fusarium and SOM. In summary, applying an appropriate amount of microbial fertilizer can promote the growth and improve the rhizosphere soil environment of C. pilosula. ConclusionThe compound microbial fertilizer and the C. pilosula stems and leaves fermented with compound microbial fertilizer can improve the soil nutrients, growth, development, yield, and quality of C. pilosula, and thus they can be applied to the artificial cultivation of C. pilosula.
3.Effects of Different Microbial Fertilizers on Physiology and Rhizosphere Soil Environment of Codonopsis pilosula
Xia JIANG ; Junxi ZHAO ; Panpan SHI ; Xiaoxuan WANG ; Chenhui DU ; Shuosheng ZHANG ; Haixian ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):241-251
ObjectiveTo study the effects of applying different microbial fertilizers on the growth and rhizosphere soil environment of Codonopsis pilosula and provide a theoretical basis for ecological cultivation of this medicinal plant. MethodsSeven groups were designed, including CK (no application of microbial fertilizer), T1 (Trichoderma longibrachiatum fertilizer), T2 (Bacillus subtilis fertilizer), T3 (Trichoderma viride fertilizer), T4 (compound microbial fertilizer), T5 (C. pilosula stems and leaves fermented with compound microbial fertilizer), and T6 (Scutellaria baicalensis stems and leaves fermented with T. viride fertilizer). The physiological indicators, yield, and quality of C. pilosula and the physicochemical properties, enzyme activities, and microbial diversity in the rhizosphere soil of different fertilizer treatments were measured. ResultsGroup T1 showed slight decreases in soluble protein content (SPC) and superoxide dismutase (SOD). Groups T2-T6 showed increases in physiological indicators such as proline (Pro), soluble solids content (SSC), SPC, catalase (CAT), and peroxidase (POD) and a decrease in malondialdehyde (MDA) in C. pilosula leaves. All the fertilizer treatments increased the yield of C. pilosula and the total polysaccharide content in the roots. T1, T2, T3, T4, and T5 increased the total flavonoid content in the roots. Meanwhile, T4 increased the total saponin content in the roots. All the fertilizer treatments reduced the pH and increased the electric conductivity (EC), soil organic matter (SOM), and alkaline nitrogen (AN) in the soil. T2 and T5 increased the available phosphorus (AP), and T3, T4, T5, and T6 increased the available potassium (AK) in the soil. All the fertilizer treatments increased the activities of urease, sucrase, and CAT in the soil. Except that T1 decreased the bacterial diversity in the soil, other fertilizer treatments significantly increased bacterial and fungal diversity in the soil. Different fertilizer treatments significantly affected the composition of bacterial and fungal communities in the soil. At the phylum level, the dominant bacterial phyla included Proteobacteria, Acidobacteriota, and Bacteroideta, and the dominant fungal phyla were Ascomycota, Mortierellomycota, and unclassified_fungi in the rhizosphere soil of C. pilosula after bacterial fertilizer treatment. At the genus level, unclassified Gemmatimonadaceae, Sphingomonas, and unclassified Vicinamibacteraceae were the dominant bacterial genera, while unidentified, unclassified Fungi, and unclassified Sordariomycetes were the dominant fungal genera in the rhizosphere soil. The results of redundancy analysis indicated that the main physicochemical factors affecting changes of microbial communities in the rhizosphere soil of C. pilosula were pH, EC, AK, AN, AP, and soil organic matter (SOM) in the soil. The correlation heatmap showed that Bryobacter had significantly positive correlations with EC, AK, and AN. There was a significantly negative correlation between Fusarium and SOM. In summary, applying an appropriate amount of microbial fertilizer can promote the growth and improve the rhizosphere soil environment of C. pilosula. ConclusionThe compound microbial fertilizer and the C. pilosula stems and leaves fermented with compound microbial fertilizer can improve the soil nutrients, growth, development, yield, and quality of C. pilosula, and thus they can be applied to the artificial cultivation of C. pilosula.
4.Effect of Static Balance Ability on Dual-Task Costs Under Different Walking TaskInterventions in Chinese Older Adults
Chenglong WANG ; Mingjian NIE ; Chenhui XIAO ; Yini WU ; Jingjing WANG
Medical Journal of Peking Union Medical College Hospital 2025;16(3):598-605
To compare gait parameters during single-task and dual-task walking in older adults, and to examine differences in dual-task costs between individuals with high versus low balance abilities under different task conditions. From November to December 2024, community-dwelling older adults were recruited through Hebei Province's national physical fitness monitoring network across multiple communities in Shijiazhuang and Xiong'an New Area. An inertial sensor-based gait analysis system was used to collect spatiotemporal gait parameters during three conditions: single-task walking, motor dual-task walking (simultaneous carrying task), and cognitive dual-task walking (serial subtraction task). Participants were stratified into high-balance and low-balance groups based on median eyes-closed single-leg stance duration (cut-off: 18.40 seconds). Dual-task costs (DTC) were calculated and compared between groups. The study included 133 eligible participants[30 male, 103 female; mean age (66.95±4.75) years]. The low-balance group 66 participants, and the high-balance group 67 participants. Compared to single-task walking, motor dual-task conditions significantly increased stride time and double support phase duration (all While dual-task conditions generally impair gait parameters in older adults, individuals with higher balance abilities maintain more stable gait patterns during motor dual-tasks, demonstrating greater resilience to interference. These findings highlight the importance of balance capacity in preserving functional mobility during daily multitasking activities.
5.Cross-sectional Analysis of ASMI and Muscle Strength in Older Adults: Based on the 2024 National Routine Physical Fitness Surveillance Database
Chenhui XIAO ; Chenglong WANG ; Qiang FENG ; Chaoqun FAN ; Jingjing WANG
Medical Journal of Peking Union Medical College Hospital 2025;16(3):627-633
To explore the dose-response correlation between appendicular skeletal muscle index (ASMI) and muscle strength in older adults. This study included adults aged 60-79 years from the 2024 National Routine Physical Fitness Surveillance database. ASMI was used to assess muscle mass, while handgrip strength and 30-second chair stand test (30-s CST) repetitions were employed to evaluate muscle strength. Linear regression analyses, adjusted for age and body mass index (BMI), were performed to examine the associations between ASMI and handgrip strength/30-s CST. Additionally, restricted cubic spline (RCS) models were applied for dose-response analysis. A total of 68 038 older adults (56.3% female, mean age 68.0±5.4 years) were included. Males exhibited significantly higher handgrip strength(33.6± 7.8 kg s Muscle mass and strength are significantly positively correlated in older adults. Personalized muscle health interventions should be considered to reduce the rate of decline in muscle strength, when ASMI falls below 13.55 kg/m2 in men or 11.25 kg/m2 in women.
7.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
8.eIF3a function in immunity and protection against severe sepsis by regulating B cell quantity and function through m6A modification.
Qianying OUYANG ; Jiajia CUI ; Yang WANG ; Ke LIU ; Yan ZHAN ; Wei ZHUO ; Juan CHEN ; Honghao ZHOU ; Chenhui LUO ; Jianming XIA ; Liansheng WANG ; Chengxian GUO ; Jianting ZHANG ; Zhaoqian LIU ; Jiye YIN
Acta Pharmaceutica Sinica B 2025;15(3):1571-1588
eIF3a is a N 6-methyladenosine (m6A) reader that regulates mRNA translation by recognizing m6A modifications of these mRNAs. It has been suggested that eIF3a may play an important role in regulating translation initiation via m6A during infection when canonical cap-dependent initiation is inhibited. However, the death of animal model studies impedes our understanding of the functional significance of eIF3a in immunity and regulation in vivo. In this study, we investigated the in vivo function of eIF3a using eIF3a knockout and knockdown mouse models and found that eIF3a deficiency resulted in splenic tissue structural disruption and multi-organ damage, which contributed to severe sepsis induced by Lipopolysaccharide (LPS). Ectopic eIF3a overexpression in the eIF3a knockdown mice rescued mice from LPS-induced severe sepsis. We further showed that eIF3a maintains a functional and healthy immune system by regulating B cell function and quantity through m6A modification of mRNAs. These findings unveil a novel mechanism underlying sepsis, implicating the pivotal role of B cells in this complex disease process regulated by eIF3a. Furthermore, eIF3a may be used to develop a potential strategy for treating sepsis.
9.Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Xueni LU ; Jianlin ZHOU ; Yi MING ; Yuan WANG ; Ruirui HE ; Yangyang LI ; Lingyun FENG ; Bo ZENG ; Yanyun DU ; Chenhui WANG
Acta Pharmaceutica Sinica B 2025;15(8):3852-3887
Invasive fungal infections (IFIs) have become prominent global health threats, escalating the burden on public health systems. The increasing occurrence of invasive fungal infections is due primarily to the extensive application of chemotherapy, immunosuppressive therapies, and broad-spectrum antifungal agents. At present, therapeutic practices utilize multiple categories of antifungal agents, such as azoles, polyenes, echinocandins, and pyrimidine analogs. Nevertheless, the clinical effectiveness of these treatments is progressively weakened by the emergence of drug resistance, thereby substantially restricting their therapeutic utility. Consequently, there is an imperative need to expedite the discovery of novel antifungal agents. This review seeks to present an exhaustive synthesis of novel antifungal drugs and candidate agents that are either under current clinical investigation or anticipated to progress into clinical evaluation. These emerging compounds exhibit unique benefits concerning their modes of action, antimicrobial spectra, and pharmacokinetic characteristics, potentially leading to improved therapeutic outcomes relative to conventional antifungal regimens. It is anticipated that these novel therapeutic agents will furnish innovative treatment modalities and enhance clinical outcomes in managing invasive fungal infections.
10.Antitumor Study of Neoantigen-reactive T Cells Co-expressing IL-7 and CCL19 in Mouse Lung Cancer
WU DI ; LI CHENHUI ; WANG YAN ; HE ZHENGQIANG ; JIN CHANG'E ; GUO MIN ; CHEN RONGCHANG ; ZHOU CHENGZHI
Chinese Journal of Lung Cancer 2024;27(7):504-513
Background and objective Neoantigen reactive T cell(NRT)has the ability to inhibit the growth of tumors expressing specific neoantigens.However,due to the difficult immune infiltration and the inhibition of tumor micro en-vironment,the therapeutic effect of NRT in solid tumors is limited.In this study,we designed NRT cells(7×19 NRT)that can express both interleukin-7(IL-7)and chemokine C-C motif ligand 19(CCL19)in mouse lung cancer cells,and evaluated the difference in anti-tumor effect between 7×19 NRT cells and conventional NRT cells.Methods We performed next-generation sequencing and neoantigen prediction for mouse Lewis lung carcinoma(LLC),prepared RNA vaccine,cultured NRT cells,constructed retroviral vectors encoding IL-7 and CCL19,transduced NRT cells and IL-7 and CCL19 were successfully ex-pressed,and 7×19 NRT was successfully obtained.The anti-tumor effect was evaluated in vivo and in vitro in mice.Results The 7×19 NRT cells significantly enhanced the proliferation and invasion ability of T cells by secreting IL-7 and CCL19,achieved significant tumor inhibition in the mouse lung cancer and extended the survival period of mice.The T cell infiltration into tumor tissue and the necrosis of tumor tissue increased significantly after 7×19 NRT treatment.In addition,both 7×19 NRT treatment and conventional NRT treatment were safe.Conclusion The anti-solid tumor ability of NRT cells is significantly enhanced by the arming of IL-7 and CCL19,which is a safe and effective genetic modification of NRT.


Result Analysis
Print
Save
E-mail