1.Identification of PLATZ gene family in Camellia sinensis and expression analysis of this gene family under high temperature and drought stresses.
Xiaoshu YI ; Anru ZHENG ; Chengzhe ZHOU ; Caiyun TIAN ; Cheng ZHANG ; Yuqiong GUO ; Xuan CHEN
Chinese Journal of Biotechnology 2025;41(7):2897-2912
The plant AT-rich sequence and zinc-binding protein (PLATZ) family is composed of plant-specific zinc finger-like transcription factors, which play important roles in plant growth, development, and stress tolerance. In this study, to gain a better understanding of the PLATZ gene in C. sinensis and elucidate its response under drought and high temperature conditions, the PLATZ gene family of the C. sinensis cultivar 'Tieguanyin' was systematically identified, and a total of 12 CsPLATZ family members were identified. Expasy online and other bioinformatics tools were used to analyze the members of the PLATZ gene family in terms of protein physicochemical properties, phylogenetic relationships, cis-acting elements, gene structures, and intra- and inter-species collinearity. The results of phylogenetic analysis classified the CsPLATZ family members into 2 subfamilies. The conserved domains and gene structures of PLATZ family members within the same subfamily had a high degree of consistency, whereas a certain degree of diversity was observed among the subfamilies. Twelve PLATZ genes were unevenly distributed across 7 chromosomes of C. sinensis and the promoter regions of these genes had multiple cis-acting elements related to hormone and stress responses. The collinearity analysis showed that there were 4 pairs of duplication events in the CsPLATZ gene family, all of which were segmental duplications. Based on this gene family, C. sinensis had a closer evolutionary relationship with A. thaliana than with O. sativa. The transcriptome analysis showed that the expression levels of CsPLATZ family members varied in different tissue samples of C. sinensis. 6 genes (CsPLATZ-1, CsPLATZ-2, CsPLATZ-3, CsPLATZ-4, CsPLATZ-6, and CsPLATZ-8) with high expression in shoots, young leaves, and roots were selected for high temperature and drought stress treatments, and their expression was quantified by qRT-PCR. The results indicated that the six genes might play important roles in the response to drought stress. In addition, CsPLATZ-2 and CsPLATZ-8 might have important functions in the response to high temperature stress. The results of this study will contribute to a better understanding of the biological functions of PLATZ genes and their possible roles in the growth, development, and stress responses of C. sinensis.
Droughts
;
Camellia sinensis/physiology*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Stress, Physiological/genetics*
;
Multigene Family
;
Transcription Factors/genetics*
;
Hot Temperature
;
Genes, Plant
2.RNA Methylome Reveals the m6A-mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-withering.
Chen ZHU ; Shuting ZHANG ; Chengzhe ZHOU ; Caiyun TIAN ; Biying SHI ; Kai XU ; Linjie HUANG ; Yun SUN ; Yuling LIN ; Zhongxiong LAI ; Yuqiong GUO
Genomics, Proteomics & Bioinformatics 2023;21(4):769-787
The epitranscriptomic mark N6-methyladenosine (m6A), which is the predominant internal modification in RNA, is important for plant responses to diverse stresses. Multiple environmental stresses caused by the tea-withering process can greatly influence the accumulation of specialized metabolites and the formation of tea flavor. However, the effects of the m6A-mediated regulatory mechanism on flavor-related metabolic pathways in tea leaves remain relatively uncharacterized. We performed an integrated RNA methylome and transcriptome analysis to explore the m6A-mediated regulatory mechanism and its effects on flavonoid and terpenoid metabolism in tea (Camellia sinensis) leaves under solar-withering conditions. Dynamic changes in global m6A level in tea leaves were mainly controlled by two m6A erasers (CsALKBH4A and CsALKBH4B) during solar-withering treatments. Differentially methylated peak-associated genes following solar-withering treatments with different shading rates were assigned to terpenoid biosynthesis and spliceosome pathways. Further analyses indicated that CsALKBH4-driven RNA demethylation can directly affect the accumulation of volatile terpenoids by mediating the stability and abundance of terpenoid biosynthesis-related transcripts and also indirectly influence the flavonoid, catechin, and theaflavin contents by triggering alternative splicing-mediated regulation. Our findings revealed a novel layer of epitranscriptomic gene regulation in tea flavor-related metabolic pathways and established a link between the m6A-mediated regulatory mechanism and the formation of tea flavor under solar-withering conditions.
RNA/metabolism*
;
Epigenome
;
Plant Proteins/metabolism*
;
Plant Leaves/metabolism*
;
Camellia sinensis/metabolism*
;
Flavonoids
;
Terpenes/metabolism*
;
Tea/metabolism*
;
Gene Expression Regulation, Plant
3.Transcriptome analysis reveals the role of withering treatment in flavor formation of oolong tea (Camellia sinensis).
Chen ZHU ; Shuting ZHANG ; Chengzhe ZHOU ; Biying SHI ; Linjie HUANG ; Yuling LIN ; Zhongxiong LAI ; Yuqiong GUO
Chinese Journal of Biotechnology 2022;38(1):303-327
Oolong tea is a semi-fermented tea with strong flavor, which is widely favored by consumers because of its floral and fruity aroma as well as fresh and mellow taste. During the processing of oolong tea, withering is the first indispensable process for improving flavor formation. However, the molecular mechanism that affects the flavor formation of oolong tea during withering remains unclear. Transcriptome sequencing was used to analyze the difference among the fresh leaves, indoor-withered leaves and solar-withered leaves of oolong tea. A total of 10 793 differentially expressed genes were identified from the three samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly involved in flavonoid synthesis, terpenoid synthesis, plant hormone signal transduction and spliceosome pathways. Subsequently, twelve differentially expressed genes and four differential splicing genes were identified from the four enrichment pathways for fluorescence quantitative PCR analysis. The results showed that the expression patterns of the selected genes during withering were consistent with the results in the transcriptome datasets. Further analysis revealed that the transcriptional inhibition of flavonoid biosynthesis-related genes, the transcriptional enhancement of terpenoid biosynthesis-related genes, as well as the jasmonic acid signal transduction and the alternative splicing mechanism jointly contributed to the flavor formation of high floral and fruity aroma and low bitterness in solar-withered leaves. The results may facilitate better understanding the molecular mechanisms of solar-withering treatment in flavor formation of oolong tea.
Camellia sinensis/genetics*
;
Gene Expression Profiling
;
Plant Leaves
;
Plant Proteins/metabolism*
;
Taste
;
Tea
;
Transcriptome/genetics*
4.Type Ⅰ sialidosis: a case report
Yinchao LI ; Shuda CHEN ; Xianyue LIU ; Yiran ZHAO ; Chengzhe WANG ; Liemin ZHOU
Chinese Journal of Neurology 2021;54(3):251-254
Type Ⅰ sialidosis is a neurosomatic disorder related to the storage of lysosomal and induced by shortage of neuraminidase. It is an autosomal recessive disorder, maybe heterogeneous in its onset, clinical manifestations and prognosis. A case of type Ⅰ sialidosis with a missense mutation in the α-N-acetyl-neuraminidase (NEU1) gene is reported. The patient was characterized by reduced visual acuity, ataxia and subcortical myoclonus. Although the macular cherry red spots were not detected in the male patient, his bilateral visual evoked potential showed severely prolonged latencies of P100, which was consistent with continuous decline of his visions. Finally, he was treated with carbamazepine and clonazepam with moderate improvement in the symptom of myoclonus. In order to make the definite diagnosis, the importance of a clinical history integrating all the patient′s clinical manifestations and the mutation in NEU1 gene was highlighted. Regardless of being an uncommon disorder, the burden for those patients with sialidosis was significant. Therefore, this diagnosis in the relevant setting should always be considered.

Result Analysis
Print
Save
E-mail