1. Analysis of safety and efficacy of irreversible electroporation hepatic ablation with high-frequency bipolar pulse in swine
Jing YUAN ; Shoulong DONG ; Yuxiao CHEN ; Tingyuan LI ; Chuang HE ; Liangshan LI ; Lin CHEN ; Chenguo YAO ; Xuequan HUANG
Chinese Journal of Digestive Surgery 2019;18(10):979-985
Objective:
To investigate the safety and efficacy of irreversible electroporation (IRE) hepatic ablation with high-frequency bipolar pulse in swine.
Methods:
The experimental study was conducted. A total of 18 swines of either gender, aged (6.8+ 0.8)months with a range of 5.5-8.0 months, were collected from Animal Laboratory Center of Army Medical University. were randomly divided into 15 in experimental group and 3 in control group. The swines in experimental group underwent IRE hepatic ablation with high-frequency bipolar pulse, and 3 swines were chose randomly and underwent enhanced CT examination immediately after ablation, and at 3, 7, 14, and 28 days after ablation. The liver tissues were taken for histopathological examination. The swines in the control group underwent IRE hepatic ablation with high-frequency monopolar burst, and was performed enhanced CT examination at 3 days after ablation. Liver tissues were taken for histopathological examination. Observation indicators: (1) comparison of muscle contraction of siwnes between two groups; (2) imaging performance on enhanced CT after IRE ablation in the experimental group; (3) hepatic histopathological findings after IRE ablation in the experimental group; (4) comparison of apoptotic index in the ablation zone between two groups. The measurement data with normal distribution were expressed as
2.The anti-tumor efficacy of nanosecond pulsed electric fields on the mouse with melanoma xenograft in vivo.
Qiao PENG ; Shoulong DONG ; Fei GUO ; Chenguo YAO ; Junying TANG
Journal of Biomedical Engineering 2013;30(6):1302-1308
This study was conducted to investigate the anti-tumor efficacy of nanosecond pulsed electric fields (nsPEFs) on the mouse with A375-GFP melanoma xenograft in vivo. In vivo fluorescence image analysis system was used in this study to evaluate the effects of nsPEFs on human melanoma A375 cell xenograft. On the Day 90 af ter pulse delivery, the skin that had contained A375 cell xenograft was surgically excised and pathologically evalua ted. The changes of scar were recorded by digital camera. The experiment revealed that significant changes in fluorescence value trend and amplitude were found in the treated group from those in the control group. The fluorescence of tumor in the treated group decreased mostly 48 h after the treatment and completely disappeared 10 d after the treatment, while that in control group was increased gradually. Surgical excision of the area confirmed a complete pathologic response. Within a few days after the nsPEFs treatment, a hard scab formed at the treatment region. The scab fell off by the end of the second week. As time went on, the scar gradually became faded and all xenograft tumors were disappeared without recurrence. From the experiment, we learn that nsPEFs can bring good therapeutic effect. It may provide a new approach for the clinical treatment of superficial tumors.
Animals
;
Electric Stimulation Therapy
;
methods
;
Heterografts
;
Humans
;
Melanoma
;
therapy
;
Mice
;
Neoplasm Recurrence, Local
;
Skin
;
pathology
3.Induction of apoptosis of ovarian cancer cells and influence on Fas-mediated apoptosis pathway by nanosecond pulsed electric fields.
Rumin XIA ; Junying TANG ; Xue ZHAO ; Fei GUO ; Jian WANG ; Chenguo YAO
Journal of Biomedical Engineering 2012;29(6):1144-1149
This paper is to investigate the apoptosis effect of ovarian cancer SKOV3 cells induced by nanosecond plused electric fileds (nsPEFs) and to study its influence on Fas-mediated apoptosis. SKOV3 cell were exposed to the 45kV/cm of field intensity, 30 pulses, and 50ns, 100ns, and 200ns of pulse width, respectively. Flow cytometry were used to assay apoptosis. Agarose gel electrophoresis was used to detect DNA ladder. Real time PCR (RT-PCR) and Western blot analysis were used to measure the expression level of Fas, FasL, caspase-8 and Bid. Flow cytometry results revealed that the late apoptosis rates and (or) necrosis were significantly higher than those in control group (3.03% +/- 0.57%) (P < 0.05), with apoptosis rates and (or) necrosis being (18.31 +/- 0.65%), (45.55% +/- 3.71%), (47.47% +/- 7.01%) in the groups of 50ns, 100ns, 200ns, respectively. A typical DNA ladder pattern of internucleosomal fragmentation was observed in the groups of 50ns and 100ns, but not clear in the 200ns group. RT-PCR results revealed that the mRNA expression of Fas, FasL, caspase8 and Bid were significantly increased in groups of 50ns, 100ns, but significantly decreased in group of 200ns (P < 0.05). Meanwhile, Western blot analysis demonstrated that the Fas, FasL, Caspase-8 and Bid expression were significantly higher in groups of 50ns, 100ns, but significantly lower in group of 200ns (P < 0.05). It indicated that 45kV/cm, 50ns, 100ns nsPEFs could induce apoptosis in ovarian cancer SKOV3 cells and activate Fas-mediated apoptosis pathway.
Apoptosis
;
radiation effects
;
Caspase 8
;
metabolism
;
Cell Line, Tumor
;
Electromagnetic Fields
;
Electroporation
;
methods
;
Fas Ligand Protein
;
Female
;
Humans
;
Ovarian Neoplasms
;
pathology
;
fas Receptor
;
metabolism
4.Effects of electric pulses on liver cancer cells: apoptosis induction and decrease of mitochondrial transmembrane potential.
Jie CHENG ; Liling TANG ; Deyou XIAO ; Fangyi JIANG ; Jianfei WANG ; Yan MI ; Chenguo YAO ; Caixin SUN
Journal of Biomedical Engineering 2011;28(3):446-450
In order to investigate the effects of electric pulses on cancer cells, we carried out the experiments with exposing HepG2 and L02 to electric pulses (1 kV/cm, l00 micros, 1 Hz) for different lengths of time (8 s, 15 s, 30 s, 60 s). Annexin V-FITC Kit and Flow cytometry were used to study the apoptosis of treated cells. The results showed that the electric pulses of 1 kV/cm, l00 micros, 1 Hz for 8 s could not induce tumor cells apoptosis. Apoptosis was observed when tumor cells were stimulated for 15 s and longer, and the apoptosis percentage increased with the increase of stimulation time. Furthermore, tumor cells were more sensitive than normal cells in response to electrical pulses. Rhodamine 123 and Laser Scanning Confocal Microscope (LSCM) were used to make a real-time study of mitochondrial transmembrane potential (Deltapsim) when the tumor cells were exposed to electric pulses for 60 s. No significant change of Deltapsim was observed within 30 s stimulation. After that, the Deltapsim increased sharply and declined later, suggesting that the mitochondrial pathway may be one of the apoptosis mechanism induced by electric pulses.
Apoptosis
;
radiation effects
;
Electromagnetic Fields
;
Hep G2 Cells
;
Humans
;
Membrane Potential, Mitochondrial
;
physiology
;
radiation effects
;
Time Factors
5.Analysis of frequency-domain and window effect for cellular inner and outer membranes subjected to pulsatile electric field.
Chenguo YAO ; Xin CHEN ; Chengxiang LI ; Yan MI ; Caixin SUN
Journal of Biomedical Engineering 2011;28(1):12-17
Based on multi-layer dielectric model of spherical biological cell, a simulating method of frequency characteristics of inner and outer membranes is presented in this paper. Frequency-domain analysis showed that inner and outer membranes subjected to pulsed electric field exhibit band-pass and low-pass filter characteristics, respectively. A calculating method of the transmembrane potential of inner and outer membranes induced by time-varying electric field was introduced, and the window effect between electric field and transmembrane potential was also analyzed. When the duration is reduced from microsecond to sub-microsecond, and to nanosecond, the target induced was from the outer membrane to inner membrane gradually. At the same time, the field intensity should be increased to induce corresponding bioelectric effects. Window effect provides theoretical guidance to choosing reasonable parameters for application of pulsatile electric field in tumor treatment.
Cell Membrane
;
physiology
;
radiation effects
;
Computer Simulation
;
Electromagnetic Fields
;
Humans
;
Membrane Potentials
;
physiology
;
radiation effects
;
Models, Biological
6.Focusing properties of picosecond electric pulses in non-invasive cancer treatment.
Zaiquan LONG ; Chenguo YAO ; Chengxiang LI ; Yan MI ; Caixin SUN
Journal of Biomedical Engineering 2010;27(5):1128-1132
In the light of optical theory, we advanc an ultra-wideband impulse radiating antenna (IRA) which is composed of an ellipsoidal reflector and a cone radiator. The high-intensity ultra-short electric pulses radiated by IRA can be transferred into the deep target in tissue non-invasively and be focused effectively. With the focused picosecond electric pulses, the organelles (mitochondria) transmembrane potential shall change to collapse under which the tumor cells will be targetly induced to apoptosis, so the method of non-invasive treatment of tumors would be achieved. Based on the time-domain electromagnetic field theory, the propagation characteristics of picosecond electric pulses were analyzed with and without the context of biological tissue, respectively. The results show that the impulse characteristics of input pulse were maintained and the picosecond electric pulses can keep high resolution in target areas. Meanwhile, because of the dispersive nature of medium, the pulse amplitude of the pulses will attenuate and the pulse width will be broadened.
Apoptosis
;
radiation effects
;
Electric Stimulation Therapy
;
methods
;
Electrodes
;
Electromagnetic Phenomena
;
Electroporation
;
methods
;
Humans
;
Neoplasms
;
pathology
;
therapy
7.Experimental study on effects of energy controllable steep pulses on cytoskeleton of human ovarian cancer cells SKOV3.
Anping LIN ; Lina HU ; Yao TANG ; Caixin SUN ; Yan MI ; Chenguo YAO
Journal of Biomedical Engineering 2009;26(2):268-272
The aim of our study was to determine the effects of energy controllable steep pulse (ECSP) on the cytoskeleton of human ovarian cancer cells SKOV3. SKOV3 cells were divided into five groups under ECSP treatment with different parameters (frequency, pulse duration, peak value of voltage). The positive control group included SKOV3 cells treated with volchicine; the negative control group included SKOV3 cells subjected to sham-lightning stroke. Rhodamine-phalloidine was used to label microfilament directly. After using immunofluorescence to label microbules, we observed them by means of Confocal Laser Scanning Microscope. Making specimen and using electronmicroscope, we observed the ultramicrostructure of cystoskeleton. The results showed that ECSP-treated-SKOV3 cells lost their normal cystoskeleton network structure. There were obvious microfilament disaggregation, diffused skeleton protein, and disappearance of cystoskeleton network structure. Also noticeable were microbule disaggregation, reduction of pseudopod, obvious microfilament disaggregation, permutation disorder and structure disappearance. Moreover, this effect bears a direct relation with dosage.
Cell Line, Tumor
;
Cytoskeleton
;
ultrastructure
;
Electric Conductivity
;
Electromagnetic Fields
;
Electroporation
;
Female
;
Humans
;
Ovarian Neoplasms
;
pathology
;
Pulse
8.Recent advances on physical ablation for tumor.
Chengxiang LI ; Chenguo YAO ; Yaen MI ; Zheng'ai XIONG
Journal of Biomedical Engineering 2009;26(5):1137-1140
Physical ablation is a new kind of tumor treatment which directly acts on local solid tumors to eradicate or destroy tumor tissues by use of various advanced physical techniques. Physical ablation can be classified by physical characteristics as thermal ablate therapy (TAT), cryoablation and electrical ablation. Recent studies and technical trend of these three physical ablation treatments are reviewed in this paper.
Animals
;
Catheter Ablation
;
methods
;
Cryosurgery
;
Humans
;
Hyperthermia, Induced
;
Neoplasms
;
surgery
;
therapy
;
Salvage Therapy
9.Steep pulse changes the expression of tissue factor in ovarian tumor.
Cong LI ; Li'na HU ; Pingling WANG ; XiaoJing DONG ; Yunshan ZHU ; Chenguo YAO ; Yan MI
Journal of Biomedical Engineering 2008;25(2):402-406
As a micro-wound and target-aimed technology without special limitation, Electric Pulses have been widely researched in tumor treatment and the effects have been demonstrated by a series of experiments, yet the mechanism has not been explained clearly. In this experiment, energy controllable steep pulse (ECSP) was used to treat nude mice bearing human ovarian tumor, and the result was compared with that of the control group. The expression of an important coagulant factor-tissue factor (TF) was analyzed, as TF was also a tumor indicator of invasion and metastasis, the result may indicate the relationship among ECSP, thrombosis and tumor invasion. In this study, to shed light on the mechanism of tumor treatment in electrical fields, nude mice bearing ovarian tumors were randomly divided into the treated group and the untreated group. We treated the former group and took out the tumor instantly. The thrombosis and necrosis of ovarian tumor were observed under microscope. The expression of TF was analyzed by SP immunohistochemistry and RT-PCR. Lower level of TF expression was noticed in the tumor tissue treated by ECSP, and more apparent thrombosis was also seen in this group. The results make it clear that ECSP can accelerate thrombosis and consume coagulant factors such as TF, and that low expression of TF in tumor tissue can cut out the signal paths of tumor invasion. So it is suggested that ECSP may restrain tumor invasion and metastasis by modulating thrombosis.
Animals
;
Electric Stimulation Therapy
;
methods
;
Electromagnetic Fields
;
Electroporation
;
methods
;
Female
;
Humans
;
Mice
;
Mice, Nude
;
Neoplasm Transplantation
;
Ovarian Neoplasms
;
metabolism
;
therapy
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Random Allocation
;
Thromboplastin
;
biosynthesis
;
genetics
10.Research progress of nanosecond pulsed electric field applied to intracellular electromanipulation.
Chenguo YAO ; Dengbin MO ; Caixin SUN ; Xin CHEN ; Zheng'ai XIONG
Journal of Biomedical Engineering 2008;25(5):1206-1209
In recent years, many experts have done some researches on experiment and mechanism of intracellular electromanipulation (IEM) under nanosecond pulsed electric field (nsPEF). The experiment results have shown that nsPEF could not induce electroporation of cell membrane, but could induce intracellular effects such as apoptosis, calcium release, enhancement of gene expression, and fragmentation of DNA and chromosome. In order to account for the phenomenon, researchers believe that when the pulse width of the pulsed electric field is larger than the charging time of plasma membrane, the pulsed electric field mainly targets on the outer membrane of cell; and that the effect of the pulsed electric field on nucleus and nuclear membrane increases with the decrease of the pulse width. It is also believed that the effect of electroporation changes from the outer membrane to intracellular electromanipulation when the pulse width decreases to a value being smaller than the charging time of plasma membrane.
Apoptosis
;
Calcium
;
metabolism
;
Cell Membrane
;
metabolism
;
Cell Nucleus
;
metabolism
;
Cell Physiological Phenomena
;
Electromagnetic Fields
;
Electroporation
;
Gene Expression

Result Analysis
Print
Save
E-mail