1.An injectable bioceramics-containing composite hydrogel promoting innervation for pulp-dentin complex repair.
Xingyu TAO ; Hongjian ZHANG ; Peng MEI ; Jinzhou HUANG ; Bing FANG ; Zhiguang HUAN ; Chengtie WU
International Journal of Oral Science 2025;17(1):66-66
Dental pulp-dentin complex defects remain a major unresolved problem in oral medicines. Clinical therapeutic methods including root canal therapy and vital pulp therapy are both considered as conservative strategies, which are incapable of repairing the pulp-dentin complex defects. Although biomaterial-based strategies show remarkable progress in antibacterial, anti-inflammatory, and pulp regeneration, the important modulatory effects of nerves within pulp cavity have been greatly overlooked, making it challenging to achieve functional pulp-dentin complex regeneration. In this study, we propose an injectable bioceramics-containing composite hydrogel in combination of Li-Ca-Si (LCS) bioceramics and gelatin methacrylate matrix with photo-crosslinking properties. Due to the sustained release of bioactive Li, Ca and Si ions from LCS, the composite hydrogels possess multiple functions of promoting the neurogenic differentiation of Schwann cells, odontogenic differentiation of dental pulp stem cells, and neurogenesis-odontogenesis couples in vitro. In addition, the in vivo results showed that LCS-containing composite hydrogel can significantly promote the pulp-dentin complex repair. More importantly, LCS bioceramics-containing composite hydrogel can induce the growth of nerve fibers, leading to the re-innervation of pulp tissues. Taken together, the study suggests that LCS bioceramics can induce the innervation of pulp-dentin complex repair, offering a referable strategy of designing multifunctional filling materials for functional periodontal tissue regeneration.
Dental Pulp/drug effects*
;
Hydrogels/pharmacology*
;
Animals
;
Ceramics/pharmacology*
;
Dentin/drug effects*
;
Biocompatible Materials/pharmacology*
;
Rats
;
Gelatin
;
Regeneration/drug effects*
;
Cell Differentiation/drug effects*
;
Injections
;
Humans
;
Odontogenesis/drug effects*
2.Expert consensus on the construction, evaluation and application of bone organoids (version 2024)
Jian WANG ; Long BAI ; Xiao CHEN ; Yuanyuan LIU ; Guohui LIU ; Zhongmin SHI ; Kaili LIN ; Chuanglong HE ; Jing WANG ; Zhen GENG ; Weiyang SHI ; Wencai ZHANG ; Fengjin ZHOU ; Qiang YANG ; Lili YANG ; Zhiwei WANG ; Haodong LIN ; Yunfei ZHANG ; Fuxin WEI ; Wei CHEN ; Wenguo CUI ; Fei LUO ; Jun FEI ; Hui XIE ; Jian LUO ; Chengtie WU ; Xuanyong LIU ; Yufeng ZHENG ; Changsheng LIU ; Jiacan SU
Chinese Journal of Trauma 2024;40(11):974-986
Bone organoids can simulate the complex structure and function of the bone tissues, which makes them a frontier technology in organoid researches. Bone organoids show a tremendous potential of applications in bone disease modeling, bone injury repair, and medicine screening. Although advancements have been made so far in constructing bone organoids with functional structures like mineralization, bone marrow, trabecular bone, callus, woven bone, etc, the researches in this field are confronted with numerous challenges such as lack of standardized construction strategies and unified evaluation criteria, which limits their further promotion and application. To standardize researches in bone organoids, the Orthopedic Expert Committee of Geriatric Branch of Chinese Association of Gerontology and Geriatrics, the Youth Osteoporosis Group of Orthopedic Branch of Chinese Medical Association, the Osteoporosis Group of Orthopedic Surgeon Branch of Chinese Medical Doctor Association, and the Osteoporosis Committee of Shanghai Association of Integrated Traditional Chinese and Western Medicine organized related experts to formulate Expert consensus on the construction, evaluation, and application of bone organoids ( version 2024) based on an evidence-based approach. A total of 17 recommendations were put forth, aiming to standardize researches and clinical applications of bone organoids and enhance their value in scientific research and clinical practice.
3.A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair.
Beimin TIAN ; Xuan LI ; Jiujiu ZHANG ; Meng ZHANG ; Dian GAN ; Daokun DENG ; Lijuan SUN ; Xiaotao HE ; Chengtie WU ; Faming CHEN
International Journal of Oral Science 2022;14(1):45-45
The positive regulation of bone-forming osteoblast activity and the negative feedback regulation of osteoclastic activity are equally important in strategies to achieve successful alveolar bone regeneration. Here, a molybdenum (Mo)-containing bioactive glass ceramic scaffold with solid-strut-packed structures (Mo-scaffold) was printed, and its ability to regulate pro-osteogenic and anti-osteoclastogenic cellular responses was evaluated in vitro and in vivo. We found that extracts derived from Mo-scaffold (Mo-extracts) strongly stimulated osteogenic differentiation of bone marrow mesenchymal stem cells and inhibited differentiation of osteoclast progenitors. The identified comodulatory effect was further demonstrated to arise from Mo ions in the Mo-extract, wherein Mo ions suppressed osteoclastic differentiation by scavenging reactive oxygen species (ROS) and inhibiting mitochondrial biogenesis in osteoclasts. Consistent with the in vitro findings, the Mo-scaffold was found to significantly promote osteoblast-mediated bone formation and inhibit osteoclast-mediated bone resorption throughout the bone healing process, leading to enhanced bone regeneration. In combination with our previous finding that Mo ions participate in material-mediated immunomodulation, this study offers the new insight that Mo ions facilitate bone repair by comodulating the balance between bone formation and resorption. Our findings suggest that Mo ions are multifunctional cellular modulators that can potentially be used in biomaterial design and bone tissue engineering.
Bone Regeneration
;
Cell Differentiation
;
Ions/pharmacology*
;
Molybdenum/pharmacology*
;
Osteoclasts
;
Osteogenesis
;
Printing, Three-Dimensional
;
Tissue Scaffolds/chemistry*

Result Analysis
Print
Save
E-mail