1.From Golgiphagy to Golgimedicine — a new strategy for disease prevention and treatment targeting the Golgi apparatus
Acta Pharmaceutica Sinica 2025;60(2):280-287
Functional disorders of the Golgi apparatus are harmful to the health of organisms, leading to various diseases. Removing damaged Golgi apparatus is crucial for maintaining cellular homeostasis, therefore, autophagy of Golgi apparatus has gradually attracted attention. This article summarizes Golgi autophagy, briefly describes its structure and functions, Golgi autophagy receptors, and the role of Golgi autophagy in disease treatment. It also proposes the new concept of Golgimedicine, which looks forward to the role of Golgi in disease diagnosis, treatment, prognosis, genetic diseases, and rare diseases. This article aims to explore the scientific connotations of Golgi autophagy, Golgi structure and function from the perspective of Golgimedicine, providing theoretical references for drug target research, new drug development, and the healthy development of humanity.
2.Astrocytes in The Central Nervous System Regulate Myelination and Remyelination Through Multiple Mechanisms
Wen-Xiao XING ; Fu-Cheng LUO ; Tao LÜ
Progress in Biochemistry and Biophysics 2025;52(7):1792-1803
In the central nervous system (CNS), the myelin sheath, a specialized membrane structure that wraps around axons, is formed by oligodendrocytes through a highly coordinated spatiotemporal developmental program. The process begins with the directed differentiation of neural precursor cells into oligodendrocyte precursor cells (OPCs), followed by their migration, proliferation, differentiation, and maturation, ultimately leading to the formation of a multi-segmental myelin sheath structure. Recent single-cell sequencing research has revealed that this process involves the temporal regulation of over 200 key genes, with a regulatory network composed of transcription factors such as Sox10 and Olig2 playing a central role. The primary function of the myelin sheath is to accelerate nerve signal transmission and protect nerve fibers from damage. Its insulating properties not only increase nerve conduction speed by 50-100 times but also ensure the long-term functional integrity of the nervous system by maintaining axonal metabolic homeostasis and providing mechanical protection. The pathological effects of myelin sheath injury exhibit a cascade amplification pattern: acute demyelination leads to action potential conduction block, while chronic lesions may cause axonal damage and neuronal death in severe or long-term cases, ultimately resulting in irreversible neurological dysfunction with neurodegenerative characteristics. Multiple sclerosis (MS) is a neurodegenerative disease characterized by chronic inflammatory demyelination of the CNS. Clinically, the distribution of lesions in MS exhibits spatial heterogeneity, which is closely related to differences in the regenerative capacity of oligodendrocytes within the local microenvironment. Emerging evidence suggests that astrocytes form a dynamic “neural-immune-metabolic interface” and play a multidimensional regulatory role in myelin development and regeneration by forming heterogeneous populations composed of different subtypes. During embryonic development, astrocytes induce the targeted differentiation of OPCs in the ventricular region through the Wnt/β-catenin pathway. In the mature stage, they secrete platelet-derived growth factor AA (PDGF-AA) to establish a chemical gradient that guides the precise migration of OPCs along axonal bundles. Notably, astrocytes also provide crucial metabolic support by supplying energy substrates for high-energy myelin formation through the lactate shuttle mechanism. In addition, astrocytes play a dual role in myelin regulation. During the acute injury phase, reactive astrocytes establish a triple defense system within 72 h: upregulating glial fibrillary acidic protein (GFAP) to form scars that isolate lesions, activating the JAK-STAT3 regeneration pathway in oligodendrocytes via leukemia inhibitory factor (LIF), and releasing tumor necrosis factor-stimulated gene-6 (TSG-6) to inhibit excessive microglial activation. However, in chronic neurodegenerative diseases, the phenotypic transformation of astrocytes contributes to microenvironmental deterioration. The secretion of chondroitin sulfate proteoglycans (CSPGs) inhibits OPC migration via the RhoA/ROCK pathway, while the persistent release of reactive oxygen species (ROS) leads to mitochondrial dysfunction and the upregulation of complement C3-mediated synaptic pruning. This article reviews the mechanisms by which astrocytes regulate the development and regeneration of myelin sheaths in the CNS, with a focus on analyzing the multifaceted roles of astrocytes in this process. It emphasizes that astrocytes serve as central hubs in maintaining myelin homeostasis by establishing a metabolic microenvironment and signaling network, aiming to provide new therapeutic strategies for neurodegenerative diseases such as multiple sclerosis.
3.Cell components of tumor microenvironment in lung adenocarcinoma: Promising targets for small-molecule compounds.
Mingyu HAN ; Feng WAN ; Bin XIAO ; Junrong DU ; Cheng PENG ; Fu PENG
Chinese Medical Journal 2025;138(8):905-915
Lung cancer is one of the most lethal tumors in the world with a 5-year overall survival rate of less than 20%, mainly including lung adenocarcinoma (LUAD). Tumor microenvironment (TME) has become a new research focus in the treatment of lung cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. The various cellular components exert a different role in apoptosis, metastasis, or proliferation of lung cancer cells through different pathways, thus contributing to the treatment of adenocarcinoma and potentially facilitating novel therapeutic methods. This review summarizes the research progress on different cellular components with cell-cell interactions in the TME of LUAD, along with their corresponding drug candidates, suggesting that targeting cellular components in the TME of LUAD holds great promise for future theraputic development.
Humans
;
Tumor Microenvironment/drug effects*
;
Adenocarcinoma of Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Adenocarcinoma/metabolism*
;
Animals
;
Apoptosis/physiology*
4.Inhibition of ISO-induced hypertrophy and damage in H9c2 cells by total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma via promoting autophagy.
Cheng-Zhi XIE ; Ying ZHANG ; Chang FU ; Xiao-Shan CUI ; Rui-Na HAO ; Jian-Xun REN
China Journal of Chinese Materia Medica 2025;50(7):1841-1849
This paper primarily investigated the protective effects and potential mechanisms of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma in alleviating isoprenaline(ISO)-induced hypertrophy and damage in H9c2 cardiomyocytes. Initially, H9c2 cardiomyocytes were used as the research subject to analyze the effects of ISO at different concentrations on cell hypertrophy and damage. On this basis, the H9c2 cardiomyocytes were divided into blank, model, and high-dose(200 μg·mL~(-1)), medium-dose(100 μg·mL~(-1)), and low-dose(50 μg·mL~(-1)) groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma. Cell hypertrophy and damage models were induced by treating cells with 400 μmol·L~(-1) ISO for 24 hours. The Incucyte live-cell analysis system was utilized to observe the status, size changes, and confluence of the cells in each group. Cell viability was detected by using the CCK-8 assay. Western blot analysis was employed to detect the expression of Ras-associated protein 7A(RAB7A), sequestosome 1(SQSTM1/p62), autophagy-related protein Beclin1, and microtubule-associated protein 1 light chain 3(LC3). Immunofluorescence was used to detect the expression level of the autophagy marker Beclin1 in H9c2 cells. The results demonstrated that compared with the blank group, the model group showed a significant reduction in cell viability(P<0.01) and a marked increase in cell hypertrophy, with an average cell length growth of 13.53%. Compared with the model group, the high-dose, medium-dose, and low-dose groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma exhibited reduced hypertrophy, with respective growths of 6.89%, 8.30%, and 8.49% and a significant decrease in growth rates(P<0.01). Cell viability in the high-dose of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma was also significantly increased(P<0.01). Western blot and immunofluorescence results indicated that compared with the blank group, the model group showed changes in Beclin1, RAB7A, and p62 expression, as well as the LC3Ⅱ/LC3Ⅰ ratio, although most changes were not statistically significant. In the groups treated with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma, the expression of autophagy-related proteins Beclin1 and RAB7A and the LC3Ⅱ/LC3Ⅰ ratio were significantly increased(P<0.05), while p62 expression significantly decreased(P<0.05). These findings collectively suggested that pretreatment of cells with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma significantly enhanced autophagy activity in cells. In summary, total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma inhibit ISO-induced hypertrophy and damage in H9c2 cells by promoting autophagy, demonstrating potential cardioprotective effects and providing new insights and scientific evidence for their preventive and therapeutic use in cardiovascular diseases.
Autophagy/drug effects*
;
Saponins/pharmacology*
;
Panax notoginseng/chemistry*
;
Panax/chemistry*
;
Animals
;
Rats
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Isoproterenol/adverse effects*
;
Myocytes, Cardiac/cytology*
;
Hypertrophy/drug therapy*
5.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
6.Influencing factors of positive surgical margins after radical resection of prostate cancer.
Chang-Jie SHI ; Zhi-Jian REN ; Ying ZHANG ; Ding WU ; Bo FANG ; Xiu-Quan SHI ; Wen CHENG ; Dian FU ; Xiao-Feng XU
National Journal of Andrology 2025;31(4):328-332
OBJECTIVE:
To investigate the influencing factors of pathological positive surgical margins (PSM) after radical resection of prostate cancer.
METHODS:
The clinical data of 407 patients who underwent radical resection of prostate cancer in our hospital from 2011 to 2020 were retrospectively analyzed. And the patients were divided into two groups according to postoperative pathological results. Single factor analysis was used to evaluate the differences in postoperative Gleason score, preoperative total prostate-specific antigen (tPSA), preoperative serum free prostate-specific antigen to preoperative tPSA ratio (fPSA/ tPSA), clinical stage, postoperative pathological stage, operation method, age, body mass index (BMI), diameter and volume of prostate tumor. Multivariate logistic regression was used to determine the independent risk factor of PSM.
RESULTS:
Among 407 patients with prostate cancer, 179 cases (43.98%) were positive. Univariate analysis showed that there were significant differences in postoperative Gleason score, preoperative tPSA, clinical stage and postoperative pathological stage between the two groups (P<0.05). And Gleason score, preoperative tPSA and pathologic stage were independent risk factors for PSM.
CONCLUSION
There are relationships between PSM and postoperative Gleason score, tPSA, clinical T stage, postoperative pathologic pT stage. Among them, postoperative Gleason score (Gleason=7 points, Gleason≥8 points), preoperative total prostate-specific antigen (tPSA > 20 μg/L), and postoperative pathologic pT stage (pT3a, pT3b) were independent risk factors for positive pathological margins of prostate cancer.
Margins of Excision
;
Prostatic Neoplasms/surgery*
;
Prostatectomy/statistics & numerical data*
;
Prostate/surgery*
;
Retrospective Studies
;
Neoplasm Grading/statistics & numerical data*
;
Prostate-Specific Antigen/blood*
;
Neoplasm Staging/statistics & numerical data*
;
Postoperative Period
;
Risk Factors
;
Humans
;
Male
7.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
8.An adaptive Bayesian randomized controlled trial of traditional Chinese medicine in progressive pulmonary fibrosis: Rationale and study design.
Cheng ZHANG ; Yi-Sen NIE ; Chuan-Tao ZHANG ; Hong-Jing YANG ; Hao-Ran ZHANG ; Wei XIAO ; Guang-Fu CUI ; Jia LI ; Shuang-Jing LI ; Qing-Song HUANG ; Shi-Yan YAN
Journal of Integrative Medicine 2025;23(2):138-144
Progressive pulmonary fibrosis (PPF) is a progressive and lethal condition with few effective treatment options. Improvements in quality of life for patients with PPF remain limited even while receiving treatment with approved antifibrotic drugs. Traditional Chinese medicine (TCM) has the potential to improve cough, dyspnea and fatigue symptoms of patients with PPF. TCM treatments are typically diverse and individualized, requiring urgent development of efficient and precise design strategies to identify effective treatment options. We designed an innovative Bayesian adaptive two-stage trial, hoping to provide new ideas for the rapid evaluation of the effectiveness of TCM in PPF. An open-label, two-stage, adaptive Bayesian randomized controlled trial will be conducted in China. Based on Bayesian methods, the trial will employ response-adaptive randomization to allocate patients to study groups based on data collected over the course of the trial. The adaptive Bayesian trial design will employ a Bayesian hierarchical model with "stopping" and "continuation" criteria once a predetermined posterior probability of superiority or futility and a decision threshold are reached. The trial can be implemented more efficiently by sharing the master protocol and organizational management mechanisms of the sub-trial we have implemented. The primary patient-reported outcome is a change in the Leicester Cough Questionnaire score, reflecting an improvement in cough-specific quality of life. The adaptive Bayesian trial design may be a promising method to facilitate the rapid clinical evaluation of TCM effectiveness for PPF, and will provide an example for how to evaluate TCM effectiveness in rare and refractory diseases. However, due to the complexity of the trial implementation, sufficient simulation analysis by professional statistical analysts is required to construct a Bayesian response-adaptive randomization procedure for timely response. Moreover, detailed standard operating procedures need to be developed to ensure the feasibility of the trial implementation. Please cite this article as: Zhang C, Nie YS, Zhang CT, Yang HJ, Zhang HR, Xiao W, Cui GF, Li J, Li SJ, Huang QS, Yan SY. An adaptive Bayesian randomized controlled trial of traditional Chinese medicine in progressive pulmonary fibrosis: Rationale and study design. J Integr Med. 2025; 23(2): 138-145.
Female
;
Humans
;
Male
;
Bayes Theorem
;
Disease Progression
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional/methods*
;
Pulmonary Fibrosis/therapy*
;
Quality of Life
;
Randomized Controlled Trials as Topic
;
Research Design
;
Adaptive Clinical Trials as Topic
9.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
10.The protective effect of icaritin on D-galactose-induced TM4 cell junctional function damage
Zhi-Li YAO ; Hai-Xia ZHAO ; Xiao-Yu MA ; Guo-Qing FU ; Jie WU ; Lai-Xin SONG ; Chang-Cheng ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1634-1641
Aim To investigate the mechanism of icar-itin(ICT)on D-galactose(D-gal)-induced TM4 ser-toli cell junctional function damage in vitro.Methods TM4 cells were divided into the normal control group and D-gal treatment group with different concentra-tions.The expression changes of TM 4 cell junction function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signaling pathway-related proteins(ERα,FAK and pY397-FAK)were detected by Western blot.The concentration of ICT was screened by MTT method.TM4 cells were divided into normal control group,D-gal treatment group,and D-gal treatment+different concentrations of ICT group.The expression levels of the above proteins were detected by Western blot.Molecular docking was used to study the interaction between ERα and ICT,meanwhile predict the affinity between them.Finally,TM4 cells were di-vided into normal control group,D-gal treatment group,ERα inhibitor group,D-gal+ICT group,and ERα inhibitor+ICT group.The expression levels of the above proteins were detected by Western blot.Re-sults Compared with the normal control group,the ex-pression of junctional function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signa-ling pathway-related proteins(ERα,FAK and pY397-FAK)were significantly down-regulated.After treat-ment with ICT,the expression of above proteins were significantly up-regulated.The docking results of ERα and ICT molecules revealed the formation of two hydro-gen bonds between Asp351 amino acid residue of ERα and ICT,with bond distances measuring 3.4? and 2.4?.Additionally,the docking binding energy be-tween them was found to be lower than-7 kcal·mol-1.After TM4 cells were treated with ERα inhibi-tor,the expression of above proteins and ERα/FAK signaling pathway-related proteins were significantly down-regulated,while the expression levels of the a-bove proteins did not change significantly after being given ICT protected group.Conclusions D-gal can cause damage to the junctional function of TM4 cells,and ICT can improve this damage,which may be related to the up-regulation of ERα/FAK signaling pathway.

Result Analysis
Print
Save
E-mail