1.Improvement effect of metformin on liver injury in non-alcoholic steatohepatitis rats
Shuang WU ; Hailin CHENG ; Dan LIU ; Ting XIAO ; Xingbang WU ; Huadong LI ; Xudong HU
China Pharmacy 2025;36(7):837-842
OBJECTIVE To investigate the effects of metformin (Met) on liver injury in non-alcoholic steatohepatitis (NASH) rats by regulating the PI3K/AKT/PDGF signaling pathway. METHODS NASH model was constructed by feeding rats with a high- glucose and high-fat diet, and assigned into Model group, Met low-dose group (Met-L group, 100 mg/kg), Met medium-dose group (Met-M group, 200 mg/kg), Met high-dose group (Met-H group, 400 mg/kg), and high dose of Met+PI3K activator group (Met-H+740 Y-P group, 400 mg/kg Met+50 mg/kg 740 Y-P), with 12 rats in each group. Another 12 rats were regarded as the Control group. Each group of rats was orally administered/injected with the corresponding medication once a day for 6 consecutive weeks. The changes in body weight and liver index of rats were recorded and analyzed. The pathological damage [evaluation of non-alcoholic fatty liver disease activity score (NAS)], lipid deposition (calculation of the proportion of oil red O-positive staining area), and fibrosis (calculation of collagen deposition score) were observed in liver tissue of rats. The levels of inflammatory factors [interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] in serum and liver tissue, the levels of serum lipid metabolism indicators [total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C)] and liver function indicators [aspartate aminotransferase (AST) and alanine Δ 基金项目 武汉市知识创新专项项目(No.2022020801010588); aminotransferase (ALT)] were measured. The expression levels of PI3K/AKT/PDGF signaling pathway-related proteins and Caspase-3 in liver tissue of rats were determined. RESULTS Compared with the Control group, body weight, liver index, the levels of serum lipid metabolism indicators and liver function indicators, the levels of IL-6 and TNF-α in serum and liver tissue, the NAS, the proportion of oil red O-positive staining area, the collagen deposition fraction, and the levels of phosphorylated PI3K and AKT proteins, as well as the expression levels of PDGF and Caspase-3 proteins in liver tissue, were all significantly increased (P<0.05). The liver tissue showed severe pathological damage, characterized by an abundance of lipid droplets and pronounced collagen deposition. After the intervention with Met, the aforementioned quantitative indicators and pathological changes in rats were significantly improved in a dose- dependent manner (P<0.05). 740 Y-P could reverse the improvement effects of high dose of Met on the above indexes of rats (P< 0.05). CONCLUSIONS Met can improve liver damage, and alleviate inflammatory reactions and liver fibrosis of NASH rats, the mechanism of which may be associated with inhibiting PI3K/AKT/PDGF signaling pathway.
2.Hypertrophic Cardiomyopathy: Mechanisms of Pathogenicity.
Bao Xi WANG ; Yue Ting ZHOU ; Yi Pin ZHAO ; Yong CHENG ; Jun REN ; Guan Chang TAN ; Xiao Hu WANG
Biomedical and Environmental Sciences 2025;38(8):988-1000
Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke. Given these significant clinical ramifications, research into the etiology and pathogenesis of HCM is intensifying at multiple levels. In this review, we discuss and synthesize the latest findings on HCM pathogenesis, drawing on key experimental studies conducted both in vitro and in vivo. We also offer our insights and perspectives on these mechanisms, while highlighting the limitations of current research. Advancing fundamental research in this area is essential for developing effective therapeutic interventions and enhancing the clinical management of HCM.
Cardiomyopathy, Hypertrophic/physiopathology*
;
Humans
;
Animals
3.Study on the effect of different administration regimens of iprrazole enteric-coated tablets on inhibiting gastric acid secretion
Ting-Yuan PANG ; Zhi WANG ; Zi-Shu HU ; Zi-Han SHEN ; Yue-Qi WANG ; Ya-Qian CHEN ; Xue-Bing QIAN ; Jin-Ying LIANG ; Liang-Ying YI ; Jun-Long LI ; Zhi-Hui HAN ; Guo-Ping ZHONG ; Guo-Hua CHENG ; Hai-Tang HU
The Chinese Journal of Clinical Pharmacology 2024;40(1):92-96
Objective To compare the effects of 20 mg qd and 10 mg bidadministration of iprrazole enteric-coated tablets on the control of gastric acid in healthy subjects.Methods A randomized,single-center,parallel controlled trial was designed to include 8 healthy subjects.Randomly divided into 2 groups,20 mg qd administration group:20 mg enteric-coated tablets of iprrazole in the morning;10 mg bid administration group:10 mg enteric-coated tablets of iprrazole in the morning and 10 mg in the evening.The pH values in the stomach of the subjects before and 24 h after administration were monitored by pH meter.The plasma concentration of iprazole after administration was determined by HPLC-MS/MS.The main pharmacokinetic parameters were calculated by Phoenix WinNonlin(V8.0)software.Results The PK parameters of iprrazole enteric-coated tablets and reference preparations in fasting group were as follows:The Cmax of 20 mg qd group and 10 mg bid group were(595.75±131.15)and(283.50±96.98)ng·mL-1;AUC0-t were(5 531.94±784.35)and(4 686.67±898.23)h·ng·mL-1;AUC0-∞ were(6 003.19±538.59)and(7 361.48±1 816.77)h·ng·mL-1,respectively.The mean time percentage of gastric pH>3 after 20 mg qd and 10 mg bid were 82.64%and 61.92%,and the median gastric pH within 24 h were 6.25±1.49 and 3.53±2.05,respectively.The mean gastric pH values within 24 h were 5.71±1.36 and 4.23±1.45,respectively.The correlation analysis of pharmacokinetic/pharmacodynamics showed that there was no significant correlation between the peak concentration of drug in plasma and the inhibitory effect of acid.Conclusion Compared with the 20 mg qd group and the 10 mg bid group,the acid inhibition effect is better,the administration times are less,and the safety of the two administration regimes is good.
4.Application of ultrasound in differential diagnosis of cystic biliary atresia and choledochal cyst in infants
Yujie HU ; Ting XIAO ; Feixiang XIANG ; Yao DENG ; Yunchao CHEN ; Mingxing XIE ; Cheng YU
Journal of Chinese Physician 2024;26(10):1456-1459
Objective:To evaluate the value of ultrasonography in the differential diagnosis of cystic biliary atresia (CBA) and choledochal cyst (CC) in infants.Methods:CBA or CC children <3 months of age diagnosed by surgery in Union Hospital, Tongji Medical College, Huazhong University of Science and Technology from 2015 to 2023 were collected, and the differences in general conditions and ultrasound manifestations between CBA group and CC group were retrospectively analyzed.Results:Among the 55 children, 30 were in CBA group and 25 were in CC group. The mean length diameter and width diameter of cysts in the CBA group were about (1.45±1.05)cm and (1.04±0.73)cm, respectively, which were significantly smaller than those in the CC group (5.41±2.98)cm and (3.21±2.90)cm ( P<0.001). The incidence of fibrous plaque (50.0%, 15/30) and abnormal gallbladder morphology (73.3%, 22/30) in the CBA group was significantly higher than that in the CC group [4.0%(1/25) and 16.0%(4/25), respectively]. The incidence of intrahepatic biliary mud deposition (52.0%, 13/25) and intrahepatic biliary duct dilation (64.0%, 16/25) in the CC group was significantly higher than that in the CBA group [0, 3.3%(1/30), respectively]. Conclusions:There are some differences in ultrasonography between CBA and CC children. The length and width of cysts in children with CC are significantly larger than those in children with CBA, and biliary mud deposits or intrahepatic bile duct dilatation are seen in the cysts. The incidence of fibrous plaque and abnormal gallbladder morphology in CBA children is significantly higher than that in CC children.
5.Study on Spatial Distribution of Chemical Components in Flue Cured Tobacco Leaves by Imprinting Analytical Electrospray Photoionization Mass Spectrometry
Chun-Chun LYU ; Yu-Ting JIANG ; Yong-Hua HU ; Liu-Tian WU ; Ke-Ke QI ; Cheng-Yuan LIU ; Yang PAN
Chinese Journal of Analytical Chemistry 2024;52(6):876-884,中插36-中插37
The imprint desorption electrospray photoionization mass spectrometry was employed to locally image the spatial distribution of chemical components in dried tobacco leaves after initial curing. The relative content distribution of different chemical components was obtained in tobacco leaves. The application of imprinting method could transfer tobacco internal compounds to the surface of porous polytetrafluoroethylene plate,which realized the detection and visual analysis of tobacco internal substances. Besides,the imprint desorption electrospray ionization/post-photoionization (Imprint DESI/PI) mass spectrometry imaging technique had the advantages of non-polarity discrimination,soft ionization and high ionization efficiency for plant samples,and could simultaneously detect and image rich compounds in tobacco samples. A total of 40 kinds of chemical components including alkaloids,amino acids,sugars,acids,ketones and phenols were identified based on high resolution mass spectrometry. The results showed that the representative chemical components of tobacco,such as alkaloids,amino acids and sugars,were mainly distributed near the leaf tip from the vertical analysis and at the left and right leaf edges from the horizontal analysis. Amadori compound (1-Deoxy-1-L-proline-d-fructose) was detected,and the content of Amadori was found to be consistent with that of free amino acid (proline). In addition,the technique was further used to study the climate spot disease area of tobacco,and it was found that the compounds had specific distribution in the climate spot area,which further proved the superiority of this method in studying the growth stress of tobacco leaves.
6.Review of ultrasonic technology in diagnosis and treatment of mental disorders
Yan HU ; Xiao-Yan CAO ; Xiao-Ling CHENG ; Ting YANG ; Cheng-Min WANG
Chinese Medical Equipment Journal 2024;45(3):103-110
The advantages of ultrasound imaging and transcranial ultrasound therapy were introduced,and the application progress and problems of ultrasound technology in the diagnosis and treatment of depression,obsessive-compulsive disorder,Alzheimer's disease,schizophrenia and other mental disorders were reviewed.It's pointed out that personalized and miniaturized implantable ultrasonic equipment,ultrasonic stimulation parameter optimization and drug-loading ultrasound microbubble formula improvement would be the future directions of ultrasound technology.[Chinese Medical Equipment Journal,2024,45(3):103-110]
7.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.
9.The Quantitative Evaluation of Automatic Segmentation in Lumbar Magnetic Resonance Images
Yao-Wen LIANG ; Yu-Ting FANG ; Ting-Chun LIN ; Cheng-Ru YANG ; Chih-Chang CHANG ; Hsuan-Kan CHANG ; Chin-Chu KO ; Tsung-Hsi TU ; Li-Yu FAY ; Jau-Ching WU ; Wen-Cheng HUANG ; Hsiang-Wei HU ; You-Yin CHEN ; Chao-Hung KUO
Neurospine 2024;21(2):665-675
Objective:
This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
Methods:
Leveraging a dataset of 539 lumbar spinal stenosis patients, the study utilizes the residual U-Net for semantic segmentation in sagittal and axial lumbar spine magnetic resonance images. The model, trained to recognize specific tissue categories, employs a geometry algorithm for anatomical structure quantification. Validation metrics, like Intersection over Union (IOU) and Dice coefficients, validate the residual U-Net’s segmentation accuracy. A novel rotation matrix approach is introduced for detecting bulging discs, assessing dural sac compression, and measuring yellow ligament thickness.
Results:
The residual U-Net achieves high precision in segmenting lumbar spine structures, with mean IOU values ranging from 0.82 to 0.93 across various tissue categories and views. The automated quantification system provides measurements for intervertebral disc dimensions, dural sac diameter, yellow ligament thickness, and disc hydration. Consistency between training and testing datasets assures the robustness of automated measurements.
Conclusion
Automated lumbar spine segmentation with residual U-Net and deep learning exhibits high precision in identifying anatomical structures, facilitating efficient quantification in lumbar spinal stenosis cases. The introduction of a rotation matrix enhances lesion detection, promising improved diagnostic accuracy, and supporting treatment decisions for lumbar spinal stenosis patients.

Result Analysis
Print
Save
E-mail