1.The Role of Golgi Apparatus Homeostasis in Regulating Cell Death and Major Diseases
Xin-Yue CHENG ; Feng-Hua YAO ; Hui ZHANG ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(8):2051-2067
The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and Tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
2.Tumor immune dysfunction and exclusion evaluation and chemoimmunotherapy response prediction in lung adenocarcinoma using pathomic-based approach.
Wei NIE ; Liang ZHENG ; Yinchen SHEN ; Yao ZHANG ; Haohua TENG ; Runbo ZHONG ; Lei CHENG ; Guangyu TAO ; Baohui HAN ; Tianqing CHU ; Hua ZHONG ; Xueyan ZHANG
Chinese Medical Journal 2025;138(3):346-348
3.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
5.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
6.Development of DUS testing guidelines for new Atractylodes lancea varieties.
Cheng-Cai ZHANG ; Ming QIN ; Xiu-Zhi GUO ; Zi-Hua ZHANG ; Hao-Kuan ZHANG ; Xiao-Yu DAI ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(6):1515-1523
Atractylodes lancea is a perennial herbaceous plant of Asteraceae, with rhizomes for medical use. However, A. lancea plants from different habitats have great variability, and the germplasm resources of A. lancea are unclear and mixed during production. Therefore, it is urgent to protect new varieties of A. lancea. The distinctness, uniformity, and stability(DUS) testing of new plant varieties is the foundation of plant variety protection, and the DUS testing guidelines are the technical basis for variety approval agencies to conduct DUS testing. In this study, the phenotypic traits of 94 germplasm accessions of A. lancea were investigated considering the breeding and variety characteristics of A. lancea in China. The traits were classified and described, and 24 traits were preliminarily determined, including 20 basic traits that must be tested and four traits selected to be tested. The 20 basic traits included 3 quality traits, 5 false quality traits, and 12 quantitative traits, corresponding to 1 plant traits, 2 stem traits, 8 leaf traits, 6 flower traits, and 3 seed traits. The measurement ranges and coefficients of variation of eight quantitative traits were determined, on the basis of which the grading criteria and codes of the traits were determined and assigned. The guidelines has guiding significance for the trait evaluation, utilization, and breeding of new varieties of A. lancea.
Atractylodes/growth & development*
;
China
;
Phenotype
;
Guidelines as Topic
;
Plant Breeding
7.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
8.Current situation of medicinal animal breeding and research progress in sustainable utilization of resources.
Cheng-Cai ZHANG ; Jia WANG ; Yu-Jie ZHOU ; Xiao-Yu DAI ; Xiu-Fu WAN ; Chuan-Zhi KANG ; De-Hua WU ; Jia-Hui SUN ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(16):4397-4406
Traditional Chinese medicine(TCM) is the pillar for the development of motherland medicine, and animal medicine has a long history of application in China, characterized by wide resources, strong activity, definite efficacy, and great benefits. It has significant potential and important status in the consumption market of raw materials of TCM. In the context of global climate change, farming system alterations, and low renewability, the depletion of wild medicinal animal resources has accelerated. Accordingly, the conservation and sustainable utilization of wild resources of animal medicinal materials has become a problem that garners increasing attention and urgently needs to be solved. This paper summarizes the current situation of domestic and foreign medicinal animal breeding and research progress in industrial application in recent years and points out the issues related to standardized breeding, germplasm selection and breeding, and quality evaluation standards for medicinal animals. Furthermore, this paper discusses standardized breeding, quality standards, resource protection and utilization, and the search for alternative resources for rare and endangered medicinal animals. It proposes that researchers should systematically carry out in-depth basic research on animal medicine, improve the breeding scale and level of medicinal animals, employ modern technology to enhance the quality standards of medicinal materials, and strengthen the research and development of alternative resources. This approach aims to effectively address the relationship between protection and utilization and make a significant contribution to the sustainable development of medicinal animal resources and the animal-based Chinese medicinal material industry.
Animals
;
Breeding
;
China
;
Medicine, Chinese Traditional
;
Conservation of Natural Resources
9.Guiding significance of intra-articular sagittal reduction in the treatment of tibial plateau fractures.
Jia-Fan ZHANG ; An-Hua LONG ; Da-Cheng HAN ; Zi-Chao JIA ; Ya-Kui ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(1):100-104
Tibial plateau fracture is a fracture involving the proximal articular surface of the tibia, and its injury mechanism is complex, the fracture morphology is different, and it is often accompanied by different degrees of soft tissue injury, which is difficult to diagnose and treat. In recent years, the research hotspot has focused on solving the reduction and fixation of the posterior lateral column of the tibial plateau, because it has been clinically found that the residual sagittal plane after tibial plateau fracture is insufficient reduction or loss of reduction leads to knee joint dysfunction. The posterior inclination angle of the tibial plateau is an important parameter to describe the sagittal alignment of the tibia. In the natural state, the posterior tibial slope(PTS) is altered to involve the soft tissues around the knee joint such as anterior cruciate ligament(ACL) and posterior cruciate ligament(PCL), which affects the stability of the knee joint. In total knee arthroplasty(TKA), choosing the appropriate PTS can effectively increase the prosthesis survival rate, improve the flexion and extension knee efficacy, which is beneficial to knee joint stability. In the field of orthopedic trauma, correction of sagittal deformity is equally important, following the principle of "reverse mechanism of injury". Quantitative evaluation of postoperative sagittal realignment of tibial plateau fractures and investigation of the effect of sagittal realignment on long-term outcomes and complications are still poorly understood and require further clinical and biomechanical studies.
Humans
;
Tibial Fractures/physiopathology*
;
Fracture Fixation, Internal/methods*
;
Tibial Plateau Fractures
10.Early impact of robot-assisted total knee arthroplasty on the treatment of varus knee arthritis.
Xin YANG ; Qing-Hao CHENG ; Fu-Qiang ZHANG ; Hua FAN ; Fu-Kang ZHANG ; Zhuang-Zhuang ZHANG ; Yong-Ze YANG ; An-Ren ZHANG ; Hong-Zhang GUO
China Journal of Orthopaedics and Traumatology 2025;38(4):343-351
OBJECTIVE:
To investigate the clinical efficacy and advantages of robot-assisted total knee arthroplasty (TKA) in patients with varus knee osteoarthritis.
METHODS:
Between October 2022 and June 2023, a total of 59 patients with severe knee osteoarthritis resulting in varus were treated with total knee arthroplasty, aged from 59 to 81 years with an average (70.90±4.63) years, including 19 mals and 40 females. The patients were divided into two groups based on the surgical method used:28 patients in the robot group and 31 patients in the traditional group. The robot group consisted of 8 males and 20 femalse patients, with an average age of (70.54±4.80) years and an average disease duration of (14.89±8.72) months. The traditional group consisted of 11 males and 20 females patients, with an average age of (71.39±4.5) years and an average disease duration of (12.32±6.73) months. The operative duration, amount of bleeding during the operation, postoperative activity time after the operation, hip-knee-ankle angle (HKA), lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), and complications were compared between the two groups before and after the operation. Lateral tibia component (LTC), frontal tibia component (FTC), frontal femoral component (FFC) and lateral femoral component (LFC) were measured 6 months after operation Additionally, the degree of knee joint motility, American Knee Society score (KSS), and visual analogue scale(VAS) were compared before and after the operation.
RESULTS:
All patients had gradeⅠwound healing without any complications, and all patients were followed up for 6 to 8 months, with an average of (6.5±1.5) months. There were no significant differences preoperative imaging evaluation indexes (including HKA, LDFA, and MPTA), preoperative knee mobility, preoperative VAS, and preoperative KSS between the two groups (P>0.05). Comparing the operation time (109.11±7.16) min vs. (83.90±7.85) min, length of the incision (16.60±2.33) cm vs. (14.47±1.41) cm, intraoperative bleeding (106.93±6.15) ml vs. (147.97±7.62) ml, postoperative activity time (17.86±1.84) h vs. (21.77±2.68) h, between the two groups showed statistically significant differences (P<0.05). There were significant differences in FFC (88.96±0.84)° vs. (87.93±1.09)° and LFC (88.57±1.10)° vs. (87.16±1.2)° between the two groups at 6 months after operation (P<0.05). The robotic group 1, 3, 6 months after KSS (75.96±3.96), (81.53±3.78), (84.50±3.29) scores, VAS (3.68±0.67), (2.43±0.79), (0.54±0.64), knee joint mobility (113.32±4.72) °, (123.93±3.99) °, (135.36±2.34) °;Traditional group KSS (73.77±4.18), (76.48±3.60), (80.19±3.28) scores, VAS (4.16±1.04), (3.03±0.75), (1.42±0.76) scores, knee joint mobility (109.19±6.95) °, (119.94±6.08) °, (134.48±2.14) °. Compared to before surgery, both groups showed significant improvement in KSS, VAS and knee mobility during the three follow-up visits (P<0.001). Additionally, postoperative HKA (180.39±1.95)° vs. (178.52±2.23)°, LDFA (89.67±0.63) ° vs. (89.63±0.63)°, and MPTA (89.44±0.55)° vs. (89.29±0.60)° were significantly improved in both groups compared to before surgery (P<0.001). The robotic group had higher KSS than the traditional group at 1, 3, and 6 months after surgery (P<0.05). The robotic group also had lower VAS than the traditional group at 1, 3, and 6 months after surgery (P<0.05). Furthermore, knee mobility was higher in the robotic group than those in the traditional group at 1 and 6 months after surgery (P<0.05), but there was no significant difference between the two groups at 6 months after surgery.
CONCLUSION
Robot-assisted total knee arthroplasty is a safe and effective method for total knee replacement. The use of robotics can improve the limb axis and prosthesis alignment for patients with preoperative varus deformity, resulting in better clinical and imaging outcomes compared to the conventional group.
Humans
;
Female
;
Male
;
Arthroplasty, Replacement, Knee/methods*
;
Aged
;
Middle Aged
;
Osteoarthritis, Knee/physiopathology*
;
Aged, 80 and over
;
Robotic Surgical Procedures/methods*

Result Analysis
Print
Save
E-mail