1.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
2.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
3.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
4.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
5.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
6.Association Between Exposure to Particulate Matter and the Incidence of Parkinson’s Disease: A Nationwide Cohort Study in Taiwan
Ting-Bin CHEN ; Chih-Sung LIANG ; Ching-Mao CHANG ; Cheng-Chia YANG ; Hwa-Lung YU ; Yuh-Shen WU ; Winn-Jung HUANG ; I-Ju TSAI ; Yuan-Horng YAN ; Cheng-Yu WEI ; Chun-Pai YANG
Journal of Movement Disorders 2024;17(3):313-321
Objective:
Emerging evidence suggests that air pollution exposure may increase the risk of Parkinson’s disease (PD). We aimed to investigate the association between exposure to fine particulate matter (PM2.5) and the risk of incident PD nationwide.
Methods:
We utilized data from the Taiwan National Health Insurance Research Database, which is spatiotemporally linked with air quality data from the Taiwan Environmental Protection Administration website. The study population consisted of participants who were followed from the index date (January 1, 2005) until the occurrence of PD or the end of the study period (December 31, 2017). Participants who were diagnosed with PD before the index date were excluded. To evaluate the association between exposure to PM2.5 and incident PD risk, we employed Cox regression to estimate the hazard ratio and 95% confidence interval (CI).
Results:
A total of 454,583 participants were included, with a mean (standard deviation) age of 63.1 (9.9) years and a male proportion of 50%. Over a mean follow-up period of 11.1 (3.6) years, 4% of the participants (n = 18,862) developed PD. We observed a significant positive association between PM2.5 exposure and the risk of PD, with a hazard ratio of 1.22 (95% CI, 1.20–1.23) per interquartile range increase in exposure (10.17 μg/m3) when adjusting for both SO2 and NO2.
Conclusion
We provide further evidence of an association between PM2.5 exposure and the risk of PD. These findings underscore the urgent need for public health policies aimed at reducing ambient air pollution and its potential impact on PD.
7.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
Background/Aims:
Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy.
Methods:
We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.
Results:
The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset.
Conclusions
Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.
8.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
9.Successful kidney transplantation from a live donor with immune thrombocytopenia:a case report
Hsiao-Hui YANG ; Ching-Chun HO ; Chia-Ling LEE ; Yi-Feng WU ; Yen-Cheng CHEN
Clinical Transplantation and Research 2024;38(2):145-149
Organ transplantation from donors with immune thrombocytopenia (ITP), a condition involving the autoantibody-mediated destruction of platelets, is a topic of debate due to the potential for transplantation-mediated autoimmune thrombocytopenia (TMAT), a rare but potentially fatal complication. Previous reports have described transplants from deceased liver donors with ITP who had very low platelet counts and disease largely refractory to treatment. Here, we present the first case of living kidney transplantation from a donor with ITP who underwent preoperative treatment, with concurrent splenectomy performed to reduce the long-term risk of spontaneous hemorrhage.To ensure the safety of the procedure, we monitored perioperative rotational thromboelastometry parameters and platelet counts, leading to the normalization of the donor’s platelet levels. The recipient experienced an uneventful recovery of renal function without perioperative bleeding or the development of TMAT. Our report suggests that kidney transplantation from a donor with well-managed ITP is safe, and such a condition should not be considered a contraindication for donation.
10.The Clinical Observation of Inflammation Theory for Depression:The Initiative of the Formosa Long COVID Multicenter Study (FOCuS)
Shu-Tsen LIU ; Sheng-Che LIN ; Jane Pei-Chen CHANG ; Kai-Jie YANG ; Che-Sheng CHU ; Chia-Chun YANG ; Chih-Sung LIANG ; Ching-Fang SUN ; Shao-Cheng WANG ; Senthil Kumaran SATYANARAYANAN ; Kuan-Pin SU
Clinical Psychopharmacology and Neuroscience 2023;21(1):10-18
There is growing evidence that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with increased risks of psychiatric sequelae. Depression, anxiety, cognitive impairments, sleep disturbance, and fatigue during and after the acute phase of COVID-19 are prevalent, long-lasting, and exerting negative consequences on well-being and imposing a huge burden on healthcare systems and society. This current review presented timely updates of clinical research findings, particularly focusing on the pathogenetic mechanisms underlying the neuropsychiatric sequelae, and identified potential key targets for developing effective treatment strategies for long COVID. In addition, we introduced the Formosa Long COVID Multicenter Study (FOCuS), which aims to apply the inflammation theory to the pathogenesis and the psychosocial and nutrition treatments of post-COVID depression and anxiety.

Result Analysis
Print
Save
E-mail