1.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
2.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
3.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
4.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
5.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
6.Preliminary application of sacral neuromodulation in patients with benign prostatic hyperplasia complicated with underactive bladder after transurethral resection of the prostate
Ning LIU ; Yan ZHANG ; Tao LI ; Qiang HU ; Kai LU ; Lei ZHANG ; Jianping WU ; Shuqiu CHEN ; Bin XU ; Ming CHEN
Journal of Modern Urology 2025;30(1):39-42
[Objective] To evaluate the efficacy and safety of sacral neuromodulation (SNM) in the treatment of patients with benign prostatic hyperplasia (BPH) complicated with underactive bladder (UAB) who respond poorly to transurethral resection of the prostate (TURP). [Methods] A retrospective analysis was performed on 10 patients with BPH and UAB treated with TURP by the same surgeon in Zhongda Hospital Southeast University during Jan.2018 and Jan.2023.The residual urine volume was not significantly relieved after operation, and the maximum urine flow rate and urine volume per discharge were not significantly improved.All patients underwent phase I SNM, and urinary diaries were recorded before and after surgery to observe the average daily frequency of urination, volume per urination, maximum urine flow rate, and residual urine volume. [Results] The operation time was (97.6±11.2) min.During the postoperative test of 2-4 weeks, if the residual urine volume reduction by more than 50% was deemed as effective, SNM was effective in 6 patients (60.0%). Compared with preoperative results, the daily frequency of urination [(20.2±3.8) times vs. (13.2±3.2) times], volume per urination [(119.2±56.7) mL vs. (246.5±59.2) mL], maximum urine flow rate [(8.7±1.5) mL/s vs. (16.5±2.6) mL/s], and residual urine volume [(222.5±55.0) mL vs. (80.8±16.0) mL] were significantly improved, with statistical significance (P<0.05). There were no complications such as bleeding, infection, fever or pain.The 6 patients who had effective outcomes successfully completed phase II surgery, and the fistula was removed.During the follow-up of 1 year, the curative effect was stable, and there were no complications such as electrode displacement, incision infection, or pain in the irritation sites.The residual urine volume of the other 4 unsuccessful patients did not improve significantly, and the electrodes were removed and the vesicostomy tube was retained. [Conclusion] SNM is safe and effective in the treatment of BPH with UAB patients with poor curative effects after TURP.
7.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
8.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
9.Aerobic Exercise Improves Cognitive Function of Aging Mice by Regulating Intestinal Flora-metabolite Network
An-Feng WANG ; Tong WU ; Hu ZHANG ; Ji-Ling LIANG ; Ning CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1484-1498
ObjectiveThis study aimed to explore the effects of aerobic exercise on cognitive function in aging mice and to elucidate the underlying molecular mechanisms by which aerobic exercise ameliorates cognitive decline through the regulation of gut microbiota-metabolite network. By providing novel insights into the interplay between exercise, gut microbiota, and cognitive health, this research seeks to offer a robust theoretical foundation for developing anti-aging strategies and personalized exercise interventions targeting aging-related cognitive dysfunction. MethodsUsing naturally aged C57BL/6 mice as the experimental model, this study employed a multi-omics approach combining 16S rRNA sequencing and wide-targeted metabolomics analysis. A total of 18 mice were divided into 3 groups: young control (YC, 4-month-old), old control (OC, 21-month-old), and old+exercise (OE, 21-month-old with 12 weeks of moderate-intensity treadmill training) groups. Behavioral assessments, including the Morris water maze (MWM) test, were conducted to evaluate cognitive function. Histopathological examinations of brain tissue sections provided morphological evidence of neuronal changes. Fecal samples were collected for gut microbiota and metabolite profiling via 16S rRNA sequencing and ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS). Data were analyzed using a combination of statistical and bioinformatics tools to identify differentially abundant microbial taxa and metabolites and to construct interaction networks between them. ResultsBehavioral tests revealed that 12 weeks of aerobic exercise significantly improved spatial learning and memory capacity of aged mice, as evidenced by reduced escape latency and increased target area exploration and platform crossings in the MWM. Histopathological analysis demonstrated that exercise mitigated aging-related neuronal damage in the hippocampus, enhancing neuronal density and morphology. 16S rRNA sequencing indicated that exercise increased gut microbiota α‑diversity and enriched beneficial bacterial genera, including Bifidobacterium, Parabacteroides, and Rikenella. Metabolomics analysis identified 32 differentially regulated metabolites between OC and OE groups, with 94 up-regulated and 30 down-regulated in the OE group when compared with OC group. These metabolites were primarily involved in energy metabolism reprogramming (e.g., L-homocitrulline), antioxidant defense (e.g., L-carnosine), neuroprotection (e.g., lithocholic acid), and DNA repair (e.g., ADP-ribose). Network analysis further revealed strong positive correlations between specific bacteria and metabolites, such as Parabacteroides with ADP-ribose and Bifidobacterium with lithocholic acid, suggesting potential neuroprotective pathways mediated by the gut microbiota-metabolite axis. ConclusionThis study provides comprehensive evidence that aerobic exercise elicits cognitive benefits in aging mice by modulating the gut microbiota-metabolite network. These findings highlight three key mechanisms: (1) the proliferation of beneficial gut bacteria enhances metabolic reprogramming to boost DNA repair pathways; (2) elevated neuroinflammation-inhibiting factors reduce neurodegenerative changes; and (3) enhanced antioxidant defenses maintain neuronal homeostasis. These results underscore the critical role of the “microbiota-metabolite-brain” axis in mediating the cognitive benefits of aerobic exercise. This study not only advances our understanding of the gut-brain axis in aging but also offers a scientific basis for developing personalized exercise and probiotic-based interventions targeting aging-related cognitive decline. Future research should further validate these mechanisms in non-human primates and human clinical trials to establish the translational potential of exercise-induced gut microbiota-metabolite modulation for combating neurodegenerative diseases.
10.Antibacterial effects of platelets on five common pathogenic bacteria: a comparative analysis
Erxiong LIU ; Wenting WANG ; Jinmei XU ; Ning AN ; Yafen WANG ; Jieyun SHI ; Lingling ZHANG ; Yaozhen CHEN ; Wen YIN
Chinese Journal of Blood Transfusion 2025;38(6):747-758
Objective: To compare and analyze the antibacterial effects of platelets against five common clinical pathogenic bacteria including MRSA, SE, SA, E. coli, and CRKP, and to preliminarily explore the role of DCD sensitivity in the observed variations of antibacterial effects. Methods: The same number of platelets were used to establish co-culture systems of platelets and platelet lysates with the five pathogenic bacteria. The antibacterial effects of platelets and platelet lysates on the five pathogenic bacteria were evaluated by observing the turbidity of the bacterial solution, measuring the OD
value of the bacterial solution and counting the colonies. The supernatant protein of platelets co-cultured with MRSA was collected for quantitative proteomics analysis to explore the important antibacterial proteins of platelets. The content of DCD in the supernatant after co-culture of platelets and platelet lysates with the five pathogenic bacteria was detected by ELISA to preliminarily analyze the reasons for the different antibacterial effects of platelets on the five pathogenic bacteria. Results: Compared with the control group of MRSA, SA, and SE, the turbidity of the bacterial solution decreased after co-culture of platelets and platelet lysates with MRSA, SA, and SE for 12 h, and the OD
value and colony count were significantly reduced (P<0.05). The turbidity of the bacterial solution did not change significantly after co-culture of platelets and platelet lysates with E. coli for 24 h, but the OD
value decreased (P<0.05), and the colony count decreased to 10
CFU/mL but the difference was not statistically significant (P>0.05). Compared with the control group of CRKP, the turbidity, OD
value, and colony count of the bacterial solution did not change significantly after co-culture of platelets and platelet lysates with CRKP (P>0.05). Proteomics results showed that after co-culture with MRSA, important proteins related to platelet activation, including collagen, fibrinogen, von Willebrand factor, integrin αIIbβ3, platelet glycoprotein V and IV were significantly up-regulated. ELISA results showed that after co-culture with the five pathogenic bacteria, platelets could secrete a large amount of DCD, with the content around 3 μg/mL. Conclusion: The antibacterial effect of platelets on Gram-positive bacteria MRSA, SA, and SE is better than that on Gram-negative bacteria E. coli and CRKP, and platelets have the best antibacterial effect on MRSA. The differences in antibacterial effects of platelets on the five pathogenic bacteria may be related to the sensitivity of DCD antibacterial peptides to the five pathogenic bacteria.

Result Analysis
Print
Save
E-mail