1.Empirical study of input, output, outcome and impact of community-based rehabilitation stations
Xiayao CHEN ; Ying DONG ; Xue DONG ; Zhongxiang MI ; Jun CHENG ; Aimin ZHANG ; Didi LU ; Jun WANG ; Jude LIU ; Qianmo AN ; Hui GUO ; Xiaochen LIU ; Zefeng YU
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):83-89
ObjectiveTo investigate the present situation of input, output, outcome and impact of all registered community-based rehabilitation stations in Inner Mongolia in China, and analyze how the input predict the output, outcome and impact. MethodsFrom March 1st to April 30th, 2025, a questionnaire survey was conducted on all registered community-based rehabilitation stations in Inner Mongolia, covering four dimensions: input, output, outcome and impact. A total of 1 365 questionnaires were distributed. The input included four items: laws and policies, human resources, equipment and facilities, and rehabilitation information management. The output included two items: technical paths and benefits/effectiveness. The outcome included three items: coverage rates, rehabilitation interventions and functional results. The impact included two items: health and sustainability. Each item contained several questions, all of which were described in a positive way. Each question was scored from one to five. A lower score indicated that the situation of the community-based rehabilitation station was more in line with the content described in the question. Regression analysis was performed using the total score of each item of input dimension as independent variables, and the total scores of the output, outcome and impact dimensions as dependent variables. ResultsA total of 1 262 valid questionnaires were collected. The mean values of input, output, outcome and impact of community-based rehabilitation stations were 1.827 to 1.904, with coefficient of variation of 45.892% to 49.239%. The regression analysis showed that, rehabilitation information management, human resources, and laws and policies significantly predicted the output dimension (R² = 0.910, P < 0.001). Meanwhile, all four items in the input dimension predicted both the outcome (R² = 0.850, P < 0.001) and impact dimensions (R² = 0.833, P < 0.001). ConclusionInput, output, outcome and impact of the community-based rehabilitation stations in Inner Mongolia were generally in line with the content of the questions, although some imbalances were observed. Additionally, the input of community-based rehabilitation stations could significantly predict their output, outcome and impact.
2.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
3.Prospective study of association between dietary macronutrients and lung function in school aged children
LI Lu, CHEN Mengxue, LI Ruirui, LIU Xueting, WANG Xiaoyu, XU Yujie, XIONG Jingyuan, CHENG Guo
Chinese Journal of School Health 2025;46(2):200-204
Objective:
To explore the longitudinal associations between dietary macronutrients and lung function in schoolaged children, so as to provide the nutritional research evidence for promoting children s lung health.
Methods:
In November 2021, two primary schools located in Chengdu, Sichuan Province were selected from the Southwest China Childhood Nutrition and Growth (SCCNG) cohort by a stratified cluster random sampling method, enrolling a total of 1 112 school aged children aged 8 to 13 years. At baseline, the dietary and sociodemographic characteristics of the children were assessed. One year later, the forced vital capacity (FVC) of the children was measured and converted into Z scores (FVC- Z ), while the vital capacity index (VCI) was also calculated. Generalized linear regression analysis was employed to examine the associations between dietary macronutrients and lung function, considering interactions with gender and age, followed by stratified analysis.
Results:
After adjusting for confounding factors, the analysis results of the generalized linear regression model showed that the carbohydrate energy ratio was negatively correlated with FVC- Z ( β =-0.02) and VCI ( β =-0.16), while the fat energy ratio showed a positive correlation with FVC- Z ( β =0.03) and VCI ( β =0.23) ( P <0.05). The protein energy ratio was positively correlated with FVC- Z ( β =0.09) and VCI ( β =0.60) specifically in girls ( P <0.05). Additionally, there was an interaction effect of age on the associations between macronutrients and lung function ( P <0.01); in children aged 8-9 and 10-11, the carbohydrate energy supply ratio was negatively correlated with FVC- Z ( β =-0.04, -0.03) and VCI ( β =-0.29, -0.21), and fat energy supply ratio was positively correlated with FVC- Z ( β =0.07, 0.05) and VCI ( β =0.46, 0.32) ( P <0.05).
Conclusions
There are age and sex differences in the association of dietary macronutrients with lung function, with a low carbohydrate, high fat diet promoting lung function in children. Additionally, protein intake appears to have a positive influence on the lung function of girls. The early school age period may represent a critical window for dietary interventions aimed at promoting lung health.
4.Effect of Modified Yiyi Fuzi Baijiang Powder on intestinal mucosal permeability and expression of AQP3, AQP4 in ulcerative colitis rats.
Wen-Xiao LI ; Jiang CHEN ; Zhi-Cheng HE ; Lu-Rong ZHANG ; Guo-Qiang LIANG ; Xing-Xing JIANG ; Yong-Na WEI ; Qin ZHOU
China Journal of Chinese Materia Medica 2025;50(14):3962-3968
This study investigated the therapeutic effects and mechanisms of Modified Yiyi Fuzi Baijiang Powder on ulcerative colitis(UC) in rats from the perspective of dampness. SD rats were randomly allocated into six groups(n=10): control, model, mesalazine, and Modified Yiyi Fuzi Baijiang Powder at low(3.96 g·kg~(-1)·d~(-1)), medium(7.92 g·kg~(-1)·d~(-1)), and high(15.84 g·kg~(-1)·d~(-1)) doses. UC was induced in all groups except the control by administration with 3% dextran sulfate sodium(DSS) solution for 7 days. The disease activity index(DAI) was recorded, and the colon tissue was collected for analysis. Histopathological changes were assessed by hematoxylin-eosin staining. Serum levels of D-lactic acid(D-LA) and diamine oxidase(DAO) were measured by ELISA. Immunohistochemistry and PCR were employed to evaluate the expression of aquaporins(AQP3, AQP4) and tight junction proteins [zonula occludens-1(ZO-1) and occludin] at both protein and mRNA levels. Compared with the control group, the model group showed an increased DAI scores(P<0.05), intestinal mucosal damage, elevated serum levels of DAO and D-LA(P<0.05), and decreased expression of AQP3, AQP4, ZO-1, and occludin(P<0.05). Treatment with Modified Yiyi Fuzi Baijiang Powder reduced the DAI scores(P<0.05), lowered the serum levels of D-LA and DAO(P<0.05), and upregulated the expression of AQP3, AQP4, ZO-1, and occludin at both protein and mRNA levels compared with the model group. These findings suggest that Modified Yiyi Fuzi Baijiang Powder exerts therapeutic effects on UC by reducing the intestinal mucosal permeability, promoting colonic mucosal repair, and regulating abnormal intestinal water metabolism, which may involve the upregulation of AQP3 and AQP4 expression.
Animals
;
Colitis, Ulcerative/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Intestinal Mucosa/metabolism*
;
Male
;
Aquaporin 3/metabolism*
;
Aquaporin 4/metabolism*
;
Permeability/drug effects*
;
Humans
;
Powders
;
Intestinal Barrier Function
5.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education.
6.Construction and Functional Validation of GTKO/hCD55 Gene-Edited Xenotransplant Donor Pigs
Jiaoxiang WANG ; Lu ZHANG ; Shuhan CHEN ; Deling JIAO ; Heng ZHAO ; Taiyun WEI ; Jianxiong GUO ; Kaixiang XU ; Hongjiang WEI
Laboratory Animal and Comparative Medicine 2025;45(4):379-392
Objective To develop GTKO (α-1,3-galactosyltransferase gene-knockout, GTKO)/hCD55 (human CD55) gene-edited xenotransplant donor pigs and verify their function. Methods In this study, CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated nuclease 9), PiggyBac transposon technology and somatic cell nuclear transfer technology were used to construct GTKO/hCD55 gene-edited Diannan miniature pigs. The phenotype and function of GTKO/hCD55 pigs were analyzed by Sanger sequencing, real-time fluorescence quantitative PCR, flow cytometry, immunofluorescence, bisulfite sequencing, antigen-antibody binding assays, and complement-dependent cytotoxicity assays. Results After transfection of PX458 and PiggyBac gene editing vectors into wild-type fetal pig fibroblasts, 48 single-cell colonies were obtained through puromycin drug screening. Two single-cell colonies were selected for somatic cell nuclear transfer, resulting in two fetal pigs at 33 days of gestation. The GGTA1(α-1,3-galactosyltransferase) genotypes of fetal pig F01 were -17 bp and wild type (WT), while the GGTA1 genotypes of fetal pig F02 were -26 bp/+2 bp and -3 bp. The hCD55 mRNA expression levels of both fetal pigs were significantly higher than those of WT pigs (P<0.01). The fetal pig F02 was selected as the donor cell source for recloning, 11 surviving piglets were obtained, all identified as GTKO/hCD55 gene-edited pigs. These pigs showed absence of α-Gal antigen expression, but weak or no expression of hCD55 was observed. Methylation analysis of the hCD55 gene's CpG island showed hypermethylation in kidney tissue lacking hCD55 expression, whereas it was not methylated or partially methylated in kidney tissue expressing hCD55. Moreover, codon optimization of the CpG island of the hCD55 gene to reduce CG content could achieve stable expression of the hCD55 gene. In addition, antigen-antibody binding experiment showed that the amount of human IgM binding to GTKO/hCD55 gene-edited pig fibroblasts was significantly lower than that of WT pigs (P<0.01). Complement-dependent cytotoxicity experiment showed that the survival rate of fibroblasts in GTKO/hCD55 pigs was significantly higher than that in WT pigs (P<0.01). Conclusion This study demonstrates the successful generation of GTKO/hCD55 gene-edited xenotransplant donor pigs. Methylation-induced gene silencing of the hCD55 gene can be effectively avoided by reducing the CG content of the CpG island through codon optimization. This study provides a reference for the development of xenotransplant donor pigs and guides subsequent research on xenotransplantation.
7.AI-integrated IQPD framework of quality prediction and diagnostics in small-sample multi-unit pharmaceutical manufacturing: Advancing from experience-driven to data-driven manufacturing.
Kaiyi WANG ; Xinhai CHEN ; Nan LI ; Huimin FENG ; Xiaoyi LIU ; Yifei WANG ; Yanfei WU ; Yufeng GUO ; Shuoshuo XU ; Lu YAO ; Zhaohua ZHANG ; Jun JIA ; Zhishu TANG ; Zhisheng WU
Acta Pharmaceutica Sinica B 2025;15(8):4193-4209
The pharmaceutical industry faces challenges in quality digitization for complex multi-stage processes, especially in small-sample systems. Here, an intelligent quality prediction and diagnostic (IQPD) framework was developed and applied to Tong Ren Tang's Niuhuang Qingxin Pills, utilizing four years of data collected from four production units, covering the entire process from raw materials to finished products. In this framework, a novel path-enhanced double ensemble quality prediction model (PeDGAT) is proposed, which combines a graph attention network and path information to encode inter-unit long-range and sequential dependencies. Additionally, the double ensemble strategy enhances model stability in small samples. Compared to global traditional models, PeDGAT achieves state-of-the-art results, with an average improvement of 13.18% and 87.67% in prediction accuracy and stability on three indicators. Additionally, a more in-depth diagnostic model leveraging grey correlation analysis and expert knowledge reduces reliance on large samples, offering a panoramic view of attribute relationships across units and improving process transparency. Finally, the IQPD framework integrates into a Human-Cyber-Physical system, enabling faster decision-making and real-time quality adjustments for Tong Ren Tang's Niuhuang Qingxin Pills, a product with annual sales exceeding 100 million CNY. This facilitates the transition from experience-driven to data-driven manufacturing.
8.The protein arginine methyltransferase PRMT1 ameliorates cerebral ischemia-reperfusion injury by suppressing RIPK1-mediated necroptosis and apoptosis.
Tengfei LIU ; Gan HUANG ; Xin GUO ; Qiuran JI ; Lu YU ; Runzhe ZONG ; Yiquan LI ; Xiaomeng SONG ; Qingyi FU ; Qidi XUE ; Yi ZHENG ; Fanshuo ZENG ; Ru SUN ; Lin CHEN ; Chengjiang GAO ; Huiqing LIU
Acta Pharmaceutica Sinica B 2025;15(8):4014-4029
Receptor-interacting protein kinase 1 (RIPK1) plays an essential role in regulating the necroptosis and apoptosis in cerebral ischemia-reperfusion (I/R) injury. However, the regulation of RIPK1 kinase activity after cerebral I/R injury remains largely unknown. In this study, we found the downregulation of protein arginine methyltransferase 1 (PRMT1) was induced by cerebral I/R injury, which negatively correlated with the activation of RIPK1. Mechanistically, we proved that PRMT1 directly interacted with RIPK1 and catalyzed its asymmetric dimethylarginine, which then blocked RIPK1 homodimerization and suppressed its kinase activity. Moreover, pharmacological inhibition or genetic ablation of PRMT1 aggravated I/R injury by promoting RIPK1-mediated necroptosis and apoptosis, while PRMT1 overexpression protected against I/R injury by suppressing RIPK1 activation. Our findings revealed the molecular regulation of RIPK1 activation and demonstrated PRMT1 would be a potential therapeutic target for the treatment of ischemic stroke.
9.Discovery of orally active and serine-targeting covalent inhibitors against hCES2A for ameliorating irinotecan-triggered gut toxicity.
Ya ZHANG ; Yufan FAN ; Yunqing SONG ; Guanghao ZHU ; Xinjuan LI ; Jian HUANG ; Xinrui GUO ; Changhai LUAN ; Dongning KANG ; Lu CHEN ; Zhangping XIAO ; Zhaobin GUO ; Hairong ZENG ; Dapeng CHEN ; Zhipei SANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(10):5312-5326
Human carboxylesterase 2A (hCES2A) plays pivotal roles in prodrug activation and hydrolytic metabolism of ester-bearing chemicals. Targeted inhibition of intestinal hCES2A represents a feasible strategy to mitigate irinotecan-triggered gut toxicity (ITGT), but the orally active, selective, and efficacious hCES2A inhibitors are rarely reported. Here, a novel drug-like hCES2A inhibitor was developed via three rounds of structure-based drug design (SBDD) and structural optimization. Initially, donepezil was identified as a moderate hCES2A inhibitor from 2000 US Food and Drug Administration (FDA)-approved drugs. Following two rounds of SBDD and structural optimization, a donepezil derivative (B7) was identified as a strong reversible hCES2A inhibitor. Subsequently, nine B7 carbamates were rationally designed, synthesized and biologically assayed. Among all synthesized carbamates, C3 showed the most potent time-dependent inhibition on hCES2A (IC50 = 0.56 nmol/L), excellent specificity and favorable drug-like properties. C3 could covalently modify the catalytic serine of hCES2A with high selectivity, while this agent also showed favorable safety profiles, high intestinal exposure, and impressive effects for ameliorating ITGT in both human intestinal organoids and tumor-bearing mice. Collectively, this study showcases a rational strategy for developing drug-like and serine-targeting covalent inhibitors against target serine hydrolase(s), while C3 emerges as a promising orally active drug candidate for ameliorating ITGT.
10.Engineered plant extracellular vesicles: Emerging nanoplatforms for combinational cancer immunotherapy.
Fucai CHEN ; Rongrong BAO ; Wanyi YANG ; Yijing LU ; Jiaxin GUO ; Wenjing CHEN ; Jiale LI ; Kuanhan FENG ; Wen ZHANG ; Liuqing DI ; Liang FENG ; Ruoning WANG
Acta Pharmaceutica Sinica B 2025;15(11):5663-5701
Plant-derived extracellular vesicles (PDEVs), describe a group of nanoparticles released by plants. These particles are characterized by a lipid bilayer structure containing various proteins, lipids, nucleic acids, and unique metabolites. Although the study on PDEVs is relatively new, having only been around for ten years, they have shown promising development prospects in both basic research and clinical transformation areas. Evidence suggests that PDEVs have excellent application prospects in regulating inflammation and treating tumors. Their distinctive, vesicle-mimicking architecture and stellar biocompatibility render them prime candidates for ferrying various anti-cancer agents, including RNA, proteins, and conventional chemotherapy drugs. Increasingly, studies have shown that PDEVs can be engineered as an innovative platform for combination cancer immunotherapy. Consequently, this paper provides an extensive summary of current developments in engineering methods and strategies for PDEVs in cancer treatment and combined cancer immune therapeutics. The essential characteristics of PDEVs, including the biogenesis process and components, as well as their anti-tumor activity and mechanism, are summarized. Finally, the in vivo safety of PDEVs as delivery vectors and the challenges of scale-up production and clinical transformation are discussed.


Result Analysis
Print
Save
E-mail