1.Influence of pterygium thickness and area on corneal refractive status
Xiaodong CHENG ; Jie WANG ; Song GAO ; Yanhong LU ; Yanbo MA ; Xinming CUI ; Xihui CHEN
International Eye Science 2026;26(1):152-156
AIM: To investigate the influence of pterygium thickness and area on corneal refractive status.METHODS: Prospective longitudinal study. A total of 60 cases(60 eyes)of pterygium patients admitted to our hospital from January 2024 to September 2024 were randomly selected. All patients underwent pterygium excision combined with pedicle conjunctival flap transplantation for treatment. Optical coherence tomography(OCT)was used to measure the preoperative thickness of patient's pterygium, and a digital slit lamp microscope was used to measure the area of pterygium. The corneal refractive status(degree of corneal astigmatism and average curvature)and changes in uncorrected visual acuity of patients before surgery, 1 d, 1, and 3 mo after surgery were compared. The relationship between preoperative thickness and area of pterygium in patients and corneal refractive status indicators at different postoperative time points were analyzed, and Logistic regression was used to analyze the impact of pterygium thickness and area on postoperative visual improvement in patients.RESULTS: All patients completed follow-up after surgery for 3 mo. At 3 mo after surgery, visual acuity improved in 21 eyes(35%). The results of bivariate Pearson correlation analysis showed that the thickness and area of pterygium positively correlated with the degree of corneal astigmatism and uncorrected visual acuity before surgery and 1 d, 1, and 3 mo after surgery(all P<0.05), and negatively correlated with the average corneal curvature before surgery and 1 d, 1, and 3 mo after surgery(all P<0.05). Logistic regression analysis showed that the thickness and area of pterygium before surgery, high degree of corneal astigmatism, and low uncorrected visual acuity(large LogMAR value)were all risk factors for poor postoperative visual improvement in patients(OR>1, P<0.05). The large average corneal curvature before surgery was a protective factor for poor postoperative visual improvement in patients(OR<1, P<0.05).CONCLUSION: The increase in thickness and area of pterygium can, to some extent, improve corneal astigmatism, reduce the average curvature of the cornea, and affect postoperative visual recovery.
2.Effects of Jishe Qushi Capsule (脊蛇祛湿胶囊) on Serum NETs Levels and Macrophage Polarization in Collagen-Induced Arthritis Model Rats
Nina REN ; Wukai MA ; Yi LING ; Xueming YAO ; Ying HUANG ; Daomin LU ; Changming CHEN ; Weichen HUANG
Journal of Traditional Chinese Medicine 2026;67(1):60-68
ObjectiveTo investigate the possible mechanism of Jishe Qushi Capsule (脊蛇祛湿胶囊, JQC) in treating rheumatoid arthritis (RA) from the perspective of macrophage polarization mediated by neutrophil extracellular traps (NETs). MethodsTwenty-four female SD rats were randomly divided into four groups, blank control group, model group, JQC group, and peptidylarginine deiminase 4 (PAD4) inhibitor group with 6 rats in each group. All groups but the blank control group were subjected to the induction of collagen-induced arthritis (CIA). After successful model establishment, rats in the JQC group received intragastric administration of JQC 1.47 g/kg daily; rats in the PAD4 inhibitor group received intraperitoneal injections of the PAD4 inhibitor 4 mg/kg weekly. Rats in the blank, model, and PAD4 inhibitor groups received 2 ml of pure water daily by gavage. All treatments lasted 4 weeks. Joint lesions of each group were assessed on day 7, 14, 21, 28, and 35 after model establishment, and arthritis index (AI) scores were recorded. At 24 h after the final administration, histopathology of knee joints, including HE staining, safranin O-fast green staining, and TRAP staining, was performed. Flow cytometry was used to detect the counts of M1 and M2 macrophages in peripheral blood. ELISA was used to determine serum levels of TRACP, NETs, TNF-α, IL-1β, and iNOS. Western Blotting and qRT-PCR were used to measure MPO, NE, RANKL, OPG, and p65 protein and mRNA expression in knee cartilage tissue. ResultsCompared with the blank control group, the model group showed increased AI scores (P<0.05), marked synovial inflammatory infiltration, angiogenesis, and bone-cartilage destruction, increased TRAP-positive osteoclasts, increased M1 macrophages and decreased M2 macrophages, elevated serum TRACP, NETs, TNF-α, IL-1β, and iNOS (P<0.05), elevated MPO, NE, RANKL, and p65 protein/mRNA expression and decreased OPG protein/mRNA expression in knee cartilage tissue (P<0.05). Compared with the model group, the JQC group exhibited improved synovial inflammation, angiogenesis, and bone-cartilage damage, reduced AI scores on day 21, 28, and 35, decreased osteoclast counts, decreased M1 macrophages and increased M2 macrophages, reduced serum TRACP, NETs, TNF-α, IL-1β, and iNOS (P<0.05), decreased MPO, NE, RANKL, and p65 protein/mRNA expression and increased OPG expression (P<0.05). Compared with the PAD4 inhibitor group, the JQC group showed significantly lower AI scores, reduced M1 macrophages, increased M2 macrophages (P<0.05), reduced serum TRACP, TNF-α, IL-1β, and iNOS, decreased MPO, RANKL, and p65 expression, and increased OPG levels (P<0.05). ConclusionThe therapeutic mechanism of JQC for RA may involve inhibition of NETs formation, downregulation of the RANKL/NF-κB signaling pathway, and regulation of macrophage M1/M2 polarization imbalance, thereby suppressing osteoclastogenesis and inflammatory bone destruction.
3.Research progress on antibody-drug conjugates in the treatment of triple-negative breast cancer
Danna LIU ; Shuangshuang SONG ; Lu CHEN ; Yongqiang SUN ; Bo SUN ; Hanli ZHOU ; Xiaoli ZHAO ; Tiandong KONG
China Pharmacy 2026;37(1):124-129
Antibody-drug conjugates (ADCs) are a novel class of anti-tumor agents composed of a targeted monoclonal antibody, a cytotoxic drug, and a linker connecting the two. They combine the high specificity of antibodies with the potent cytotoxicity of chemotherapeutic agents. Triple-negative breast cancer (TNBC) is characterized by high aggressiveness, elevated risks of recurrence and metastasis, and poor prognosis, largely due to the lack of effective therapeutic targets. This review summarizes the research progress of ADCs in the treatment of TNBC. It has been found that ADCs targeting human epidermal growth factor receptor 2 (such as trastuzumab deruxtecan), trophoblast cell surface antigen 2 (such as sacituzumab govitecan and datopotamab deruxtecan), zinc transporter LIV-1 (such as ladiratuzumab vedotin), HER-3 (such as patritumab deruxtecan), epidermal growth factor receptor (such as AVID100), and glycoprotein non-metastatic melanoma protein B (such as glembatumumab vedotin) have all demonstrated promising therapeutic effects against TNBC. Despite challenges including acquired resistance and treatment-related toxicities, ADCs are undoubtedly reshaping the therapeutic landscape for TNBC and are expected to occupy a more central position in TNBC treatment in the future.
4.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain by Regulating PD-1/PD-L1-induced Osteoclast Formation
Lu SHANG ; Juanxia REN ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):72-79
ObjectiveThis study aims to investigate the action mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) by regulating programmed death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway-induced osteoclast formation. MethodsThirty female C57BL/6 mice were randomly allocated into the following groups (n=6 per group): normal control group, model group, low‑dose XZP group (31.5 g·kg-1), high‑dose XZP group (63 g·kg-1), and PD‑1 inhibitor (Niv) group. A bone cancer pain (BCP) model was established by injecting Lewis lung carcinoma cells. Mice in the normal control and model groups received topical application of a blank paste matrix at the wound site. Mice in the low‑ and high‑dose XZP groups were treated with XZP applied topically twice daily. Mice in the Niv group were topically administered the blank paste matrix and additionally received Niv via tail‑vein injection every two days. All interventions were continued for 21 days. During this period, behavioral tests were performed to assess mechanical, motor, and thermal nociceptive sensitivities. After 21 days, all mice were euthanized, and bone tissue from the operated side was collected for sectioning and preservation. Tartrate‑resistant acid phosphatase (TRAP) staining was used to evaluate osteoclast expression in the lesioned bone tissue. Immunohistochemistry was performed to detect the expression of Runt‑related transcription factor 2 (Runx2) in the lesioned bone tissue. Immunofluorescence was employed to assess the expression of PD‑1 and PD‑L1 in the lesioned bone tissue. ResultsCompared with the normal group, the model group showed significantly decreased limb mechanical withdrawal threshold, spontaneous paw flinching, and thermal withdrawal latency (P<0.01), increased number of osteoclasts in the lesioned bone tissue (P<0.01), and reduced expression of Runx2 (P<0.01). Compared with the model group, the BCP mice in the XZP low-dose group, XZP high-dose group, and Niv group exhibited increased limb mechanical withdrawal threshold, movement scores, and thermal withdrawal latency (P<0.01). The XZP low-dose group showed no significant changes in osteoclast number or Runx2 expression, while the XZP high-dose group and Niv group demonstrated significantly reduced osteoclast numbers (P<0.01) and significantly increased Runx2 expression (P<0.01). In the lesioned bone tissue of BCP mice, the XZP low-dose group showed no significant decrease in the percentage of PD-1 expression, but a decrease in the percentage of PD-L1 expression (P<0.05). In contrast, both the XZP high-dose group and the Niv group exhibited significant reductions in the percentages of PD-1 and PD-L1 expression (P<0.01). ConclusionXZP alleviates the pain of mice with BCP by blocking the PD-1/PD-L1 pathway to inhibit osteoclastogenesis.
5.Mechanism of Xiaozheng Zhitong Paste in Alleviating Bone Cancer Pain by Regulating Microglial Pyroptosis Based on PINK1/Parkin/NLRP3 Signaling Pathway
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):80-90
ObjectiveThe paper aims to investigate the mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) through regulating the PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy-NOD-like receptor protein 3 (NLRP3) inflammasome pathway to suppress microglial pyroptosis. MethodsLipopolysaccharide (LPS) and LPS-adenosine triphosphate (ATP) were used to establish an inflammation and pyroptosis model in microglial cells. The cells were randomly divided into the following groups: control group, LPS group, LPS+low-dose XZP group, LPS+high-dose XZP group, LPS-ATP group, LPS-ATP+low-dose XZP group, LPS-ATP+high-dose XZP group, LPS-ATP+XZP group, and LPS-ATP+XZP+CsA group. Techniques including terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), Western blot, and confocal fluorescence staining were employed to assess the effects of XZP on microglial apoptosis, inflammatory cytokine release, inflammasome activation, pyroptosis, and mitophagy. ResultsIn vitro experiments showed that compared with the blank group, the LPS group exhibited significantly increased levels of microglial apoptosis and pro-inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)(P<0.01), along with significantly upregulated protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) (P<0.01). Compared with the LPS group, the high-dose LPS-XZP group significantly reduced the level of apoptosis (P<0.01) and the content of the aforementioned pro-inflammatory factors (P<0.01). Both the low- and high-dose LPS-XZP groups dose-dependently downregulated the protein expression of iNOS, COX-2, and p-NF-κB p65 (P<0.05, P<0.01). Compared with the blank group, the LPS-ATP group showed significantly upregulated expression of pyroptosis-related proteins, including Caspase-1/pro-Caspase-1, N-terminal fragment of gasdermin D (GSDMD-N)/full-length gasdermin D (GSDMD-F), NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β precursor (pro-IL-1β), and mature IL-1β (P<0.01). The levels of pyroptotic factors IL-1β and IL-18 were significantly elevated (P<0.01), and membrane pore formation and intracellular reactive oxygen species (ROS) levels were significantly increased (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently downregulated the expression of the aforementioned pyroptosis-related proteins (P<0.05, P<0.01). The low-dose LPS-ATP+XZP group reduced IL-1β levels (P<0.01), while the high-dose group reduced both IL-1β and IL-18 levels (P<0.01) Both the low- and high-dose LPS-ATP+XZP groups dose-dependently reduced membrane pore formation and intracellular ROS production (P<0.01). Compared with the blank group, the LPS-ATP group showed significantly reduced expression of mitophagy-related proteins PINK1 and Parkin, and a decreased ratio of microtubule-associated protein 1 light chain 3Ⅱ(LC3Ⅱ) to LC3Ⅰ(P<0.01), while p62 expression was significantly increased (P<0.01). Mitochondrial ROS levels were significantly enhanced (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently reversed the expression of these proteins (P<0.05, P<0.01) and reduced mitochondrial ROS levels (P<0.01). After treatment with the mitophagy inhibitor cyclosporin A (CsA), the beneficial effects of XZP on mitochondrial function and its inhibitory effects on pyroptosis-related protein expression were significantly reversed (P<0.05, P<0.01). ConclusionXZP reduces ROS levels by activating PINK1/Parkin-mediated mitophagy, thereby inhibiting NLRP3 inflammasome activation and microglial pyroptosis, which provides new molecular evidence for the mechanism by which XZP alleviates BCP.
6.Xiaozheng Zhitong Paste Relieves Bone Cancer Pain in Mice by Alleviating Activation of Microglia in Spinal Cord and Damage to Neurons via Blocking PAR2/NF-κB/NLRP3 Pathway
Guangda ZHENG ; Linghan MENG ; Lu SHANG ; Juanxia REN ; Dongtao LI ; Haixiao LIU ; Lingyun WANG ; Changlin LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):91-100
ObjectiveTo investigate the effects and underlying mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain (BCP). MethodsThirty female BALB/c mice were randomly divided into five groups: a Sham group, a BCP group, a BCP+low-dose XZP group, a BCP+high-dose XZP group, and a BCP+high-dose XZP + protease-activated receptor 2 (PAR2) agonist GB-110 group. BCP mice model was constructed by injecting Lewis lung carcinoma cells into the femoral cavity of the right leg, which was followed by being treated with XZP for 21 d. After 21 d, the mice were sacrificed. Nissl staining was used to evaluate the survival of spinal cord neurons. Immunofluorescence staining was conducted to localize ionized calcium-binding adapter molecule 1 (Iba1) and neuronal nuclear antigen (NeuN) in spinal cord tissue, thereby assessing microglial activation and neuronal survival. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in spinal cord tissue. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels associated with M1/M2 polarization of microglia. Western blot analysis was performed to examine the expression of proteins related to microglial polarization as well as those involved in the PAR2/nuclear factor kappa B (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway in the spinal cord. ResultsCompared with the Sham group, the spinal cord neurons were damaged, the number of Nissl-positive spinal cord neurons in the spinal cord tissue was significantly reduced (P<0.01), and the rate of NeuN-positive cells was significantly decreased (P<0.01). The spinal cord microglia were activated, the inflammatory level of the spinal cord tissue was enhanced, and Iba1 staining was significantly enhanced (P<0.01). The levels of IL-1β, TNF-α, IL-6, TGF-β, IL-4 and IL-10 were significantly increased (P<0.01). The mRNA expressions of IL-1β, TNF-α and inducible nitric oxide synthase (iNOS) were significantly increased (P<0.01), and the expression of PAR2, NLRP3, ASC and NF-κB p65 proteins in the spinal cord tissue of the BCP mice was significantly enhanced (P<0.01). Compared with the BCP group, high-dose XZP treatment significantly increased the number of Nissl-positive spinal cord neurons in the BCP mice (P<0.01), significantly enhanced the rate of NeuN-positive cells in the spinal cord tissue, and significantly weakened Iba1 staining (P<0.01). In addition, the levels of IL-1β, TNF-α, and IL-6 were significantly decreased, while the levels of TGF-β, IL-4, and IL-10 were significantly increased (P<0.05, P<0.01). The mRNA expression levels of IL-1β, TNF-α, and iNOS were decreased, whereas those of cluster of differentiation 206 (CD206), arginase-1 (Arg-1), and YM1/2 were significantly increased (P<0.05, P<0.01). Low-dose and high-dose XZP treatment significantly decreased the expression of PAR2, NLRP3, ASC, and NF-κB p65 proteins in the spinal cord tissue (P<0.05, P<0.01). These effects could all be significantly eliminated by the PAR2 agonist GB-110. ConclusionXZP can mitigate BCP in mice, which may be achieved through blocking the activated PAR2/NF-κB/NLRP3 pathway.
7.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain of Mice by Reducing Ferroptosis in Spinal Cord Tissue and Neuronal Damage via Regulating Nrf2/HO-1/GPX4/SLC7A11 Signaling Pathway
Juanxia REN ; Lu SHANG ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):101-113
ObjectiveThe paper aims to investigate the action mechanism by which the Xiaozheng Zhitong paste (XZP) relieves bone cancer pain (BCP). MethodsA model of mice with BCP was established by using Lewis tumor cells. The therapeutic effects of XZP, the ferroptosis inhibitor Ferrostatin-1 (Fer-1), and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor Brusatol (Bru) on BCP were examined. Mice were randomly divided into the Sham operation group, BCP group, BCP+XZP-L group, BCP+XZP-H group, BCP+Fer-1 group, and BCP+XZP-H+Bru group, with six mice in each group. Pain behavior tests were conducted on the mice to assess pain levels. Colorimetric assays were employed to measure ferroptosis-related factors in serum and spinal cord tissue including Fe, malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). Immunofluorescence staining was used to assess ROS production in spinal cord tissue. Transmission electron microscopy was used to observe the ultrastructure of mitochondria in lumbar spinal cord tissue. Quantitative real-time polymerase chain reaction (Real-time PCR) was employed to detect mRNA expression of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in spinal cord neuron tissue. The protein expression of Nrf2, HO-1, GPX4, and SLC7A11 in spinal cord neurons was measured by Western blot. ResultsCompared with the Sham group, mice in the BCP group exhibited significantly reduced limb usage scores, mechanical foot withdrawal thresholds, and thermal foot withdrawal thresholds (P<0.01). Serum and lumbar spinal cord tissue levels of Fe, MDA, and reactive oxygen species (ROS) were significantly elevated (P<0.05), while superoxide dismutase (SOD) levels were significantly decreased (P<0.05). Lumbar spinal cord mitochondrial structural damage was observed, and mRNA and protein expression of Nrf2, HO-1, GPX4, and SLC7A11 were significantly downregulated (P<0.01). Compared with the BCP group, both low- and high-dose XZP groups improved the aforementioned pain behavioral indicators (P<0.05,P<0.01), reduced ferroptosis-related biomarkers including Fe, MDA, and ROS levels (P<0.05), increased SOD levels (P<0.05,P<0.01), alleviated mitochondrial damage, and upregulated Nrf2, HO-1, GPX4, SLC7A11 mRNA and protein expression (P<0.05,P<0.01). The high-dose XZP group exhibited comparable efficacy to Fer-1 in alleviating pain and inhibiting ferroptosis. Following Bru administration, XZP's effects on pain behavioral indicators, regulation of ferroptosis-related markers, mitochondrial structural protection, and activation of the Nrf2/HO-1/GPX4/SLC7A11 pathway were significantly reversed (P<0.05,P<0.01). ConclusionExternal application of XZP alleviates pain symptoms in BCP mice by activating the Nrf2/HO-1/GPX4/SLC7A11 pathway, thereby inhibiting ferroptosis and neuronal damage in spinal cord neurons.
8.Traditional Chinese Medicine for Cancer Pain Management: A Review
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):114-123
Cancer pain is one of the most common complications in patients with malignant tumors, severely affecting their quality of life. Its pathogenesis involves complex interactions among the tumor microenvironment, peripheral sensitization, and central sensitization. The tumor microenvironment initiates peripheral pain sensitization by secreting algogenic mediators, activating ion channels and related receptor signaling pathways, driving abnormal osteoclast activation, and mediating neuro-immune crosstalk. Persistent nociceptive input further triggers increased excitability of central neurons, activation of glial cells, and neuroinflammatory cascade reactions, ultimately leading to central pain sensitization. Although traditional opioid drugs can alleviate pain to some extent, they still have many limitations, such as incomplete analgesia, drug tolerance, and adverse reactions. In recent years, traditional Chinese medicine (TCM) compounds have made continuous progress in the treatment of cancer pain. Studies have shown that they can not only effectively relieve cancer pain and reduce the dosage of opioids but also significantly improve patients' quality of life. TCM treatment of cancer pain follows the principle of syndrome differentiation and treatment. Based on this, targeted therapeutic principles have been proposed, including promoting blood circulation, removing stasis, regulating Qi, and unblocking collaterals; tonifying the kidney, replenishing essence, warming Yang, and dispersing cold, activating blood, resolving phlegm, detoxifying, and dispersing nodules, as well as strengthening the body, replenishing deficiency, and harmonizing Qi and blood. Modern research indicates that TCM compounds can exert synergistic effects through multiple pathways, inhibiting inflammatory responses, regulating nerve conduction, intervening in bone metabolism and related gene expression, thereby producing anti-inflammatory and bone-protective effects to achieve the goal of alleviating cancer pain. This article systematically elaborates on the pathogenesis of cancer pain, the clinical application of TCM in treating cancer pain, and its related mechanisms of action, aiming to provide a theoretical basis and new strategies for the integration of TCM into comprehensive cancer pain management.
9.Advances in Diabetic Peripheral Neuropathy Treatment by Traditional Chinese Medicine Based on Cellular Senescence: A Review
Qixian MA ; Shiyu HAN ; Hui HUANG ; Jing TIAN ; Xu HAN ; Qingguang CHEN ; Hao LU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):322-330
Diabetic Peripheral Neuropathy (DPN) is one of the most common and harmful complications of type 2 diabetes. DPN's pathogenesis include high blood sugar-induced oxidative stress, inflammation, and mitochondrial dysfunction. These factors are combined to damage nerve fibers, leading to sensory issues, pain, and numbness. Through a coordinated effect, these factors trigger nerve fiber damage and lead to sensory abnormalities, pain and numbness in limbs, and other symptoms, seriously restricting patients' activities of daily living and mobility. Recent research highlights that cellular senescence plays a critical role in DPN. Cellular senescence is manifested by the loss of cell proliferation ability, and further aggravates nerve damage via oxidative stress, mitochondrial dysfunction, autophagy impairment, inflammatory reaction, and other mechanisms, accelerating DPN occurrence and progression. In terms of medical treatment, current methods focus on blood sugar control, pain relief medicine, and microcirculation improvement, while no therapy has been developed based on cellular senescence. In contrast, traditional Chinese medicine (TCM) shows a unique advantage in DPN prevention and treatment via cellular senescence modulation. TCM emphasizes a holistic approach, as well as syndrome differentiation and treatment, effective in anti-aging and nerve damage repair. Recent studies show that TCM active ingredients, including puerarin, ginsenosides, and berberine, can reduce inflammation, oxidative stress, and apoptosis via signaling pathway regulation, thereby slowing cellular senescence to alleviate nerve damage. Furthermore, TCM compounds such as Buyang Huanwutang, Taohong Siwutang, and Huangqi Guizhi Wuwutang exert synergistic effects on cellular senescence-related pathways to improve nerve health and reduce DPN clinical symptoms. Therefore, this paper reviews the literature related to the interaction between cellular senescence and DPN from the perspective of cellular senescence, summarizing the mechanism of DPN and TCM intervention strategies.
10.Application of virtual reality technology in managing negative emotions and postoperative rehabilitation in perioperative patients from 2015 to 2025: a bibliometric analysis
Lijun DONG ; Shihao XU ; Qiuhua CHEN ; Lu ZHANG ; Xiaobing YIN
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):69-82
ObjectiveTo analyze the research status, hotspots and development trends in the application of virtual reality (VR) technology in managing negative emotions and postoperative rehabilitation of perioperative patients over the past decade. MethodsLiteratures related to the application of VR technology in managing negative emotions and postoperative rehabilitation of perioperative patients were retrieved from Web of Science Core Collection database and CNKI, covering the period from January, 2015 to August, 2025, and CiteSpace 6.3.R1 was used for bibliometric analysis. ResultsA total of 267 English literatures and 130 Chinese literatures were included, with the annual number of publications showing an upward trend. The United States was the country with the largest number of publications in English literatures, and Erasmus University Rotterdam was the institution with the largest number of publications. High-frequency keywords included virtual reality, pain, surgery, anxiety and distraction. Research hotspots mainly focused on functional exercise, negative emotions, pain management and multimodal intervention strategies. English researches were deepening towards virtual reality exposure therapy, mechanism exploration and personalized schemes, while Chinese researches focused more on the verification of rehabilitation effects. ConclusionResearches on the application of VR technology in the management of perioperative patients are rapidly developing, with research hotspots shifting from single technology application to multimodal and personalized integrated intervention. Future research should focus on exploring its intervention mechanisms, personalized schemes and the breadth of cross-departmental applications.

Result Analysis
Print
Save
E-mail