1.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
2.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
3.The Significance of Bone Marrow Plasma Cell Percentage and Immature Plasma Cells in the Prognosis of Newly Diagnosed Multiple Myeloma Patients.
Yuan-Yuan ZHANG ; Qi-Ke ZHANG ; Xiao-Fang WEI ; You-Fan FENG ; Yuan FU ; Fei LIU ; Qiao-Lin CHEN ; Yang-Yang ZHAO ; Xiu-Juan HUANG ; Yang CHEN
Journal of Experimental Hematology 2025;33(2):469-474
OBJECTIVE:
To explore the significance of the plasma cell percentage and immature plasma cells in the prognosis of patients with multiple myeloma (MM).
METHODS:
The clinical data of 126 newly diagnosed MM patients in Gansu Provincial Hospital from June 2017 to November 2022 were retrospectively analyzed. The enrolled patients were divided into a higher plasma cell percentage group (group A) and a lower plasma cell percentage group (group B) according to the median plasma cell percentage (33.5%). The clinicopathological data of the two groups were compared, and the effect of plasma cell percentage on the prognosis of MM patients was analyzed using survival curves. On this basis, group A and group B were divided into subgroups with immature plasma cells (A1 group, B1 group) and subgroups without immature plasma cells (A2 group, B2 group), respectively, then the survival curves were used to analyze the effect of immature plasma cells on the prognosis of MM patients.
RESULTS:
Among the 126 patients with MM, the proportions of patients with ISS stage III, elevated β2-microglobulin(β2-MG) level, and immature plasma cells in Group A were significantly higher compared those in Group B ( P =0.015, P =0.028, P =0.010). The median overall survival(OS) and progression-free survival(PFS) of group A were 32 months and 10 months, respectively. The median OS of group B was not reached, and the median PFS was 32 months. The 3-year OS rates of patients in group A and group B were 46.7% and 62.2%, respectively ( P =0.021), and the 3-year PFS were 29.2% and 42.5%, respectively ( P =0.033). There were no significant differences in OS and PFS between group A1 and group A2, or between group B1 and group B2 ( P >0.05). Multivariate COX survival analysis showed that the plasma cell percentage ≥33.5%(HR=1.253, 95%CI : 0.580-2.889, P =0.018), age ≥65 years (HR=2.206, 95%CI : 1.170-3.510, P =0.012), lactate dehydrogenase(LDH) ≥250 U/L (HR=1.180, 95%CI : 0.621-2.398, P =0.048) and β2-MG ≥3.5 mg/L (HR=1.507, 95%CI : 0.823-3.657, P =0.036) were independent risk factors affecting OS in MM patients.
CONCLUSION
MM patients with a higher plasma cell percentage (≥33.5%) at the initial diagnosis have a later disease stage, poorer OS and PFS, compared to the patients with a lower percentage(<33.5%) of plasma cells. The presence or absence of immature plasma cells has no significant impact on the survival of MM patients.
Humans
;
Multiple Myeloma/pathology*
;
Prognosis
;
Plasma Cells/cytology*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Aged
;
Bone Marrow
4.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
5.eIF3a function in immunity and protection against severe sepsis by regulating B cell quantity and function through m6A modification.
Qianying OUYANG ; Jiajia CUI ; Yang WANG ; Ke LIU ; Yan ZHAN ; Wei ZHUO ; Juan CHEN ; Honghao ZHOU ; Chenhui LUO ; Jianming XIA ; Liansheng WANG ; Chengxian GUO ; Jianting ZHANG ; Zhaoqian LIU ; Jiye YIN
Acta Pharmaceutica Sinica B 2025;15(3):1571-1588
eIF3a is a N 6-methyladenosine (m6A) reader that regulates mRNA translation by recognizing m6A modifications of these mRNAs. It has been suggested that eIF3a may play an important role in regulating translation initiation via m6A during infection when canonical cap-dependent initiation is inhibited. However, the death of animal model studies impedes our understanding of the functional significance of eIF3a in immunity and regulation in vivo. In this study, we investigated the in vivo function of eIF3a using eIF3a knockout and knockdown mouse models and found that eIF3a deficiency resulted in splenic tissue structural disruption and multi-organ damage, which contributed to severe sepsis induced by Lipopolysaccharide (LPS). Ectopic eIF3a overexpression in the eIF3a knockdown mice rescued mice from LPS-induced severe sepsis. We further showed that eIF3a maintains a functional and healthy immune system by regulating B cell function and quantity through m6A modification of mRNAs. These findings unveil a novel mechanism underlying sepsis, implicating the pivotal role of B cells in this complex disease process regulated by eIF3a. Furthermore, eIF3a may be used to develop a potential strategy for treating sepsis.
6.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.
7.Identification of cajanonic acid A metabolites in rats by UPLC-Q-TOF-MS/MS
Yao CHENG ; Yu-juan BAN ; Rui CHEN ; Li ZHANG ; Ke-rong HU ; Jing HUANG
Acta Pharmaceutica Sinica 2024;59(5):1382-1390
This research established a simple, rapid and sensitive ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method to investigate the metabolic profiles of cajanonic acid A (CAA) in rats. After intragastric administration of CAA (30 mg·kg-1) to rats, the biological samples were detected by UPLC-Q-TOF-MS/MS. Relevant data was collected and processed, the accurate mass and MS2 spectra of the metabolites were compared with the parent compound. As a result, a total of 23 metabolites were detected, including 15 in urine, 11 in bile, 11 in feces, and 9 in plasma. The major metabolic pathways related to CAA included dehydrogenation, reduction, hydroxylation, methylation and glucuronide conjugation. This experiment was approved by Animal Ethics Committee of Guizhou Medical University (approval number: 1603137).
8.Clinical analysis of contrast-enhanced ultrasound combined with serum SMURF1 detection in the diagnosis of thyroid cancer
Jin WANG ; Xin CHANG ; Chun-Rong HAN ; Ke WAN ; Hui CHEN ; Jing ZHAO ; Juan XIONG
Journal of Regional Anatomy and Operative Surgery 2024;33(2):153-157
Objective To investigate the diagnostic value of contrast-enhanced ultrasound(CEUS)combined with serum Smad ubiquitin regulatory factor 1(SMURF1)detection for thyroid cancer.Methods A total of 144 suspected thyroid cancer patients admitted to Lishui branch of Zhongda Hospital Affiliated to Southeast University from February 2019 to February 2020 were selected as the study subjects.Based on the histopathological results,they were divided into the thyroid cancer group(76 cases)and the benign group(68 cases).All patients underwent contrast-enhanced ultrasound examination and serum SMURF1 level detection;the diagnostic value of contrast-enhanced ultrasound parameters,serum SMURF1 detection alone,and the combination of the two methods for thyroid cancer were analyzed.Results Contrast-enhanced ultrasound parameters peak intensity(PI),mean perfusion intensity(SImean)and maximum perfusion intensity(SImax)in the thyroid cancer group were lower than those in the benign group,and the level of SMURF1 mRNA was higher than that in the benign group(P<0.05).The sensitivity of contrast-enhanced ultrasound parameter SImax in the diagnosis of thyroid cancer was 82.89%,the specificity was 72.06%,the accuracy was 77.78%,and the Kappa value was 0.552.The sensitivity of serum SMURF1 in the diagnosis of thyroid cancer was 65.79%,the specificity was 94.12%,the accuracy was 79.17%,and the Kappa value was 0.589.The sensitivity,specificity,accuracy and Kappa value of SImax combined with serum SMURF1 in the diagnosis of thyroid cancer were 97.37%,85.29%,91.67%and 0.832,respectively,which were higher than those of SImax and SMURF1 alone(P<0.05),the AUC of the combination of the two methods was 0.927,which was significantly higher than that of the two methods alone(Zcombined vs.SImax=3.999,P<0.001;Zcombined vs.SMURF1=3.270,P=0.001).Conclusion Contrast-enhanced ultrasound combined with serum SMURF1 detection can improve the diagnostic efficiency of thyroid cancer,which may avoid the over-diagnosis on the premise of ensuring the effective diagnosis of thyroid cancer patients.
9.Neuroprotective effect of Wendan Decoction on a mouse model of sleep disorders via IKKβ/NF-κB pathway
Li LI ; Ru LIU ; Jing HE ; Yun CHEN ; Juan GUO ; Ke JI ; Ling LIU
Chinese Traditional Patent Medicine 2024;46(3):803-809
AIM To investigate the effect of Wendan Decoction on nerve injury in a mouse model of sleep disorders and its mechanism.METHODS A mouse model of insomnia was established by the modified multiple platform sleep deprivation method.After successful modeling,the mice were randomly divided into the model group,the estazolam tablet group(0.15 mg/kg)and the low-dose and high-dose Wendan Decoction groups(12.5,50 g/kg),with 6 mice in each group,in contrast to the 6 mice of the control group.After 7 days of drug intervention,the mice had their changes of cerebral cortex,hippocampal CA1 area and hypothalamus observed by HE staining;their neuronal damage observed by Nissl staining;their levels of neurofilament light chain(NEFL),neuron-specific enolase(NSE),S100 calcium-binding protein B(S100B),tumor necrosis factor(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β)in brain tissue and serum detected by ELISA;their cerebral expression of glial fibrillary acidic protein(GFAP)detected by immunohistochemical method;and their cerebral expressions of GFAP,phosphorylated IκB kinase β(p-IKKβ)and phosphorylated nuclear transcription factor-κB(p-NF-κB)detected by Western blot.RESULTS Compared with the model group,the high-dose Wendan Decoction group displayed increased number of neurons,complete and neatly arranged structure;decreased number of neurons with nuclear shrinkage and deformation;increased Nissl bodies,decreased levels of NEFL,NSE,S100B,TNF-α,IL-6 and IL-1β in serum and brain tissue(P<0.01);decreased cerebral expression of GFAP(P<0.01);and decreased phosphorylation levels of cerebral p-IKKβ and p-NF-κB(P<0.01).CONCLUSION Wendan Decoction can reduce the nerve damage and the expression of proinflammatory mediator in sleep disorders mice,and the mechanism may be related to the inhibited activation of IKKβ/NF-κB pathway.
10. Research progress of Parkin protein regulating mitochondrial homeostasis through ubiquitination in cardiovascular diseases
Ke-Juan LI ; Jian-Shu CHEN ; Yi-Xin XIE ; Jia-Le BU ; Xiao-Wei ZHANG ; Yong-Nan LI
Chinese Pharmacological Bulletin 2024;40(2):224-228
In addition to providing energy for cells, mitochondria also participate in calcium homeostasis, cell information transfer, cell apoptosis, cell growth and differentiation. Therefore, maintaining mitochondrial homeostasis is very crucial for the body to carry out normal life activities. Ubiquitination, a post-translational modification of proteins, is involved in various physiological and pathological processes of cells by regulating mitochondrial homeostasis. However, the mechanism by which ubiquitination regulates mitochondrial homeostasis has not been summarized, especially the effect of Parkin protein on cardiovascular diseases. In this paper, the specific mechanism of mitochondrial homeostasis regulated by ubiquitination of Parkin protein is discussed, and the influence of mitochondrial homeostasis imbalance on cardiovascular diseases is reviewed, with a view to providing potential therapeutic strategies for the clinical treatment of cardiovascular diseases.

Result Analysis
Print
Save
E-mail