1.The effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating the SDF-1/CXCR4 signaling pathway.
Ruifang WANG ; Yingchun YANG ; Haibing QIAO ; Ying YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):784-789
Objective To investigate the effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs), and to determine whether its mechanism involves the stromal cell-derived factor 1(SDF-1)/C-X-C chemokine receptor 4 (CXCR4) pathway. Methods BMSCs were divided into six groups: normal culture control group, osteogenic induction model group, low-dose gentiopicroside (L-gentiopicroside, 10 μmol/L) group, medium-dose gentiopicroside (M-gentiopicroside, 20 μmol/L) group, high-dose gentiopicroside (H-gentiopicroside, 40 μmol/L) group, and H-gentiopicroside+SDF-1/CXCR4 pathway inhibitor (AMD3100) group (H-gentiopicroside+AMD3100, 40 μmol/L gentiopicroside+10 μg/mL AMD3100). Cell viability, apoptosis, ALP activity, mineralized nodule formation, and protein levels of the SDF-1/CXCR4 pathway were assessed using the CCK-8 assay, flow cytometry, ALP staining, Alizarin Red S staining, and Western blotting, respectively. Results No mineralized nodules were observed in either the control and model group, although the color of the model group deepened. Compared with the control group, the model group showed significantly increased A value, ALP activity, expression levels of Runt related transcription factor 2 (RUNX2), osteopontin (OPN), SDF-1, CXCR4 proteins, along with a lower apoptosis rate. Compared with the model group, the L-gentiopicroside, M-gentiopicroside and H-gentiopicroside groups showed dose-dependently (L
2.CXCL12 is a potential therapeutic target for type 2 diabetes mellitus complicated by chronic obstructive pulmonary disease.
Huaiwen XU ; Li WENG ; Hong XUE
Journal of Southern Medical University 2025;45(1):100-109
OBJECTIVES:
To identify the key genes and immunological pathways shared by type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) and explore the potential therapeutic targets of T2DM complicated by COPD.
METHODS:
GEO database was used for analyzing the gene expression profiles in T2DM and COPD to identify the common differentially expressed genes (DEGs) in the two diseases. A protein-protein interaction network was constructed to identify the candidate hub genes, which were validated in datasets and disease sets to obtain the target genes. The diagnostic accuracy of these target genes was assessed with ROC analysis, and their expression levels and association with pulmonary functions were investigated using clinical data and blood samples of patients with T2DM and COPD. The abundance of 22 immune cells was analyzed with CIBERSORT algorithm, and their relationship with the target genes was examined using correlation analysis. DGIdb database was used for analyzing the drug-gene interactions and the druggable genes followed by gene set enrichment analysis.
RESULTS:
We identified a total of 175 common DEGs in T2DM and COPD, mainly enriched in immune- and inflammation-related pathways. Among these genes, CXCL12 was identified as the final target gene, whose expression was elevated in both T2DM and COPD (P<0.05) and showed good diagnostic efficacy. Immune cell infiltration correlation analysis showed significant correlations of CXCL12 with various immune cells (P<0.01). GESA analysis showed that high CXCL12 expression was significantly correlated with "cytokine-cytokine receptor interaction". Drug-gene analysis showed that most of CXCL12-related drugs were not targeted drugs with significant cytotoxicity.
CONCLUSIONS
CXCL12 is a potential common key pathogenic gene of COPD and T2DM, and small-molecule targeted drugs against CXCL12 can provide a new strategy for treatment T2DM complicated by COPD.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
Diabetes Mellitus, Type 2/genetics*
;
Chemokine CXCL12/metabolism*
;
Protein Interaction Maps
;
Gene Expression Profiling
3.Bisdemethoxycurcumin suppresses liver fibrosis-associated hepatocellular carcinoma via inhibiting CXCL12-induced macrophage polarization.
Wei YUAN ; Xinxin ZENG ; Bin CHEN ; Sihan YIN ; Jing PENG ; Xiong WANG ; Xingxing YUAN ; Kewei SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1232-1247
Chronic, unresolved inflammation correlates with persistent hepatic injury and fibrosis, ultimately progressing to hepatocellular carcinoma (HCC). Bisdemethoxycurcumin (BDMC) demonstrates therapeutic potential against HCC, yet its mechanism in preventing hepatic "inflammation-carcinoma transformation" remains incompletely understood. In the current research, clinical HCC specimens underwent analysis using hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) to evaluate the expression of fibrosis markers, M2 macrophage markers, and CXCL12. In vitro, transforming growth factor-β1 (TGF-β1)-induced LX-2 cells and a co-culture system of LX-2, THP-1, and HCC cells were established. Cell functions underwent assessment through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and Transwell assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blotting and immunofluorescence evaluated the differential expression of molecules. The interaction between β-catenin/TCF4 and CXCL12 was examined using co-immunoprecipitation (Co-IP), dual luciferase, and chromatin immunoprecipitation (ChIP) assays. A DEN-induced rat model was developed to investigate BDMC's role in liver fibrosis-associated HCC (LFAHCC) development in vivo. Our results showed that clinical HCC tissues exhibited elevated fibrosis and enriched M2 macrophages. BDMC delayed liver fibrosis progression to HCC in vivo. BDMC inhibited the inflammatory microenvironment induced by activated hepatic stellate cells (HSCs). Furthermore, BDMC suppressed M2 macrophage-induced fibrosis and HCC cell proliferation and metastasis. Mechanistically, BDMC repressed TCF4/β-catenin complex formation, thereby reducing CXCL12 transcription in LX-2 cells. Moreover, CXCL12 overexpression reversed BDMC's inhibitory effect on macrophage M2 polarization and its mediation of fibrosis, as well as HCC proliferation and metastasis. BDMC significantly suppressed LFAHCC development through CXCL12 in rats. In conclusion, BDMC inhibited LFAHCC progression by reducing M2 macrophage polarization through suppressing β-catenin/TCF4-mediated CXCL12 transcription.
Animals
;
Liver Neoplasms/etiology*
;
Humans
;
Carcinoma, Hepatocellular/immunology*
;
Liver Cirrhosis/complications*
;
Macrophages/drug effects*
;
Male
;
Rats
;
Chemokine CXCL12/genetics*
;
Diarylheptanoids/pharmacology*
;
Rats, Sprague-Dawley
;
beta Catenin/genetics*
4.MiR-139-5p regulates the Notch/RBP-J/Hes1 axis to promote homing of bone mesenchymal stem cells in bronchial asthma.
Kun WANG ; Haoxiang FANG ; Xiaomei CAO ; Ziheng ZHU
Journal of Southern Medical University 2024;44(12):2283-2290
OBJECTIVES:
To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.
METHODS:
Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining. The changes of BMSC homing after the transfection were observed, and the expressions of Notch1, RBP-J, and Hes1 mRNAs and proteins and Th1/Th2 cytokines were detected with RT-qPCR, Western blotting or ELISA.
RESULTS:
The co-cultures of BMSCs and asthmatic bronchial epithelial cells showed significantly decreased expressions of miR-139-5p, IL-2 and IL-12 and increased expressions of CXCR4, SDF-1, IL-5, IL-9, Notch1, RBP-J, and Hes1. Transfection with miR-139-5p mimics significantly increased the expressions of miR-139-5p, IL-2, CXCR4 and SDF-1 and lowered the expression levels of IL-5, IL-9, Notch1, activated Notch1, and Hes1 in the co-cultured cells. Correlation analysis showed that BMSC homing was positively correlated with miR-139-5p and IL-12 and negatively correlated with IL-5 expression. The expression of CXCR4 was negatively correlated with activated Notch1, and SDF-1 was positively correlated with miR-139-5p but negatively correlated with Notch1 expression.
CONCLUSIONS
High expression of miR-139-5p promotes homing of BMSCs in asthma by targeting the Notch1 signaling pathway to regulate the expressions of Th1/Th2 cytokines, thereby alleviating airway inflammation.
Asthma/genetics*
;
Animals
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/metabolism*
;
Rats
;
Transcription Factor HES-1/genetics*
;
Signal Transduction
;
Receptor, Notch1/genetics*
;
Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics*
;
Receptors, CXCR4/genetics*
;
Coculture Techniques
;
Rats, Sprague-Dawley
;
Chemokine CXCL12/genetics*
;
Epithelial Cells/metabolism*
5.Pro-pigmentary action of 5-fluorouracil through the stimulated secretion of CXCL12 by dermal fibroblasts.
Zhi-Kai LIAO ; Shuang-Hai HU ; Bin-Yu HAN ; Xie QIU ; Shan JIANG ; Tie-Chi LEI
Chinese Medical Journal 2021;134(20):2475-2482
BACKGROUND:
There is growing evidence that 5-fluorouracil (5-FU) combined with therapeutic trauma can effectively induce skin repigmentation in vitiligo patients who are unresponsive to conventional treatments. Previous studies have mainly focused on identifying the antimitotic activity of 5-FU for the treatment of skin cancer, but few studies have investigated its extra-genotoxic actions favoring melanocyte recruitment.
METHODS:
We utilized the full thickness excisional skin wound model in Dct-LacZ transgenic mice to dynamically assess the migration of melanocytes in the margins of wounds treated with or without 5-FU. The in-situ expression of CXCL12 was examined in the wound beds using immunofluorescence staining. Quantitative real-time polymerase chain reaction and Western blotting analyses were performed to detect the expression levels of CXCL12 mRNA and protein in primary mouse dermal fibroblasts treated with or without 5-FU. Transwell assays and fluorescein isothiocyanate (FITC)-phalloidin staining were used to observe cell migration and filamentous actin (F-actin) changes of melan-a murine melanocytes.
RESULTS:
Whole mount and cryosection X-gal staining showed that the cell numbers of LacZ-positive melanocytes were much higher in the margins of dorsal and tail skin wounds treated with 5-FU compared with the controls. Meanwhile, CXCL12 immunostaining was significantly increased in the dermal compartment of wounds treated with 5-FU (control vs. 5-FU, 22.47 ± 8.85 vs. 44.69 ± 5.97, P < 0.05). Moreover, 5-FU significantly upregulated the expression levels of CXCL12 mRNA (control vs. 5-FU, 1.00 ± 0.08 vs. 1.54 ± 0.06, P < 0.05) and protein (control vs. 5-FU, 1.00 ± 0.06 vs. 2.93 ± 0.10, P < 0.05) in cultured fibroblasts. Inhibition of the CXCL12/CXCR4 axis suppressed melanocyte migration in vitro using a CXCL12 small interfering RNA (siRNA) or a CXCR4 antagonist (AMD3100).
CONCLUSION
5-FU possesses a pro-pigmentary activity through activation of the CXCL12/CXCR4 axis to drive the chemotactic migration of melanocytes.
Animals
;
Cell Movement
;
Cell Proliferation
;
Chemokine CXCL12/genetics*
;
Fibroblasts
;
Fluorouracil/therapeutic use*
;
Humans
;
Mice
;
RNA, Messenger
;
Receptors, CXCR4
6.IL-17A activates mouse lung fibroblasts through promoting chemokine CXCL12 secretion.
Huaying WANG ; Jiapei LYU ; Liping CHEN ; Wanjun YU
Journal of Zhejiang University. Medical sciences 2020;49(6):758-764
OBJECTIVE:
To investigate the role of IL-17A in promoting the activation of lung fibroblasts and the secretion of chemokine CXCL12, and to explore the possible mechanism.
METHODS:
Lung tissues of BALB/c mice were collected after intraperitoneal injection of recombinant mouse IL-17A (rmIL-17A). Real-time RT-PCR and Western blotting were used to detect the expression levels of α-smooth muscle actin (α-SMA) and collagen I in lung tissues, and immunohistochemical staining and real-time RT-PCR were used to determine the expression of CXCL12. Normal mouse primary lung fibroblasts were isolated and cultured, and identified by immunofluorescence staining with optical microscopy. Cells and supernatant of culture medium were collected after stimulation with rmIL-17A at different concentrations. mRNA levels of α-SMA, collagen I, and CXCL12 in the cells were determined by real-time RT-PCR, and the levels of collagen I and CXCL12 in the supernatant of culture medium were determined by ELISA.
RESULTS:
The mRNA and protein levels of α-SMA and collagen I in the lung tissue of mice injected with rmIL-17A were significantly increased compared with the control group (all
CONCLUSIONS
s: IL-17A can promote the activation of lung fibroblasts and translation into myofibroblast. The secretion of collagen is increased, which promote the deposition of extracullular matrix, and leads to the occurrence and development of lung fibrosis. CXCL12, a chemokine secreted by activated fibroblasts, may be involved in this process.
Actins/genetics*
;
Animals
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Fibroblasts/metabolism*
;
Interleukin-17/pharmacology*
;
Lung/metabolism*
;
Mice
;
Mice, Inbred BALB C
7.Mechanism of EGFR Over-expression and Mutations Leading to Biological Characteristics Changes of Human Lung Adenocarcinoma Cells through CXCR4/CXCL12 Signaling Pathway.
Jia FENG ; Xueyan WEI ; Chuang LI ; Mingxiong GUO ; Min PENG ; Qibin SONG ; Guang HAN
Chinese Journal of Lung Cancer 2018;21(7):503-512
BACKGROUND:
The epidermal growth factor receptor (EFGR) mutation was closely related to the invasion and metastasis of lung adenocarcinoma and the biological axis of CXCR4/CXCL12 (chemokine receptor 4/chemokine ligand 12) played an important role in the organ-specific metastasis of the tumor. It was a question surrounding whether there is interaction between them in the process of lung adenocarcinoma metastasis. To investigate the potential molecular mechanisms of EGFR over-expression and EFGR-mutations effects on cell proliferation, migration and invasion, we constructed EGFR over-expression and three EFGR-mutant human lung adenocarcinoma H1299 cell sublines.
METHODS:
EGFR over-expression and three EFGR-mutant (EGFR-E746-A750del, EGFR-T790M and EGFR-L858R) plasmid were designed and transfected H1299 cells with Lipofectamine 2000. H1299 cells transfected with empty vector were negative control (NC), and H1299 cells without transfection were set as blank control (BC). The effects of EGFR over-expression and mutations on the proliferation, migration and invasion of H1299 cells were detected by cell cloning assay, wound healing assay and Transwell assay. The mRNA and protein expression levels of MMP-2, MMP-9, CXCR4 and CXCL12 were detected by RT-PCR and Western blot.
RESULTS:
Compared with negative control group and blank control group, EGFR over-expression and EGFR-E746-A750 deletion have significantly higher colony formation (28±2, 28.33±4.16; respectively) (P<0.05) and the cell migration and invasion ability were significantly increased (P<0.05). RT-PCR and Western blot assay showed that the mRNA and protein expression of MMP-2, MMP-9, CXCR4 and CXCL12 in EGFR over-expression and EGFR-E746-A750 deletion group were remarkably higher than that in negative control and blank control group (P<0.05).
CONCLUSIONS
EGFR over-expression and 19 exon deletion can promote the expression of MMP-2 and MMP-9 by up-regulating CXCR4/CXCL12 signaling pathway, leading to the change of tumor biological characteristics such as higher proliferation, migration and invasion ability.
Adenocarcinoma
;
pathology
;
Adenocarcinoma of Lung
;
Cell Line, Tumor
;
Cell Movement
;
genetics
;
Chemokine CXCL12
;
metabolism
;
ErbB Receptors
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Lung Neoplasms
;
pathology
;
Mutation
;
Neoplasm Invasiveness
;
Receptors, CXCR4
;
metabolism
;
Signal Transduction
;
genetics
8.The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy.
Yu ZHOU ; Han-Bo CAO ; Wen-Jun LI ; Li ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):801-810
Chemokine 12 (CXCL12), also known as stromal cell derived factor-1 (SDF-1) and a member of the CXC chemokine subfamily, is ubiquitously expressed in many tissues and cell types. It interacts specifically with the ligand for the transmembrane G protein-coupled receptors CXCR4 and CXCR7. The CXCL12/CXCR4 axis takes part in a series of physiological, biochemical, and pathological process, such as inflammation and leukocyte trafficking, cancer-induced bone pain, and postsurgical pain, and also is a key factor in the cross-talking between tumor cells and their microenvironment. Aberrant overexpression of CXCR4 is critical for tumor survival, proliferation, angiogenesis, homing and metastasis. In this review, we summarized the role of CXCL12/CXCR4 in cancer, CXCR4 inhibitors under clinical study, and natural product CXCR4 antagonists. In conclusion, the CXCL12/CXCR4 signaling is important for tumor development and targeting the pathway might represent an effective approach to developing novel therapy in cancer treatment.
Animals
;
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Chemokine CXCL12
;
genetics
;
metabolism
;
Humans
;
Molecular Targeted Therapy
;
Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
Receptors, CXCR4
;
antagonists & inhibitors
;
genetics
;
metabolism
9.Association of CXCL12/CXCR4 gene polymorphisms with genetic risk and severity of coronary stenosis in patients with coronary artery disease.
Journal of Zhejiang University. Medical sciences 2018;47(5):514-519
OBJECTIVE:
To investigate the association of CXCL12 and CXCR4 polymorphisms with the genetic risk and severity of coronary stenosis in patients with coronary artery disease (CAD).
METHODS:
Competitive allele specific PCR(KASP) was performed to identify the genotypes of rs2297630 and rs2322864 polymorphisms in 302 CAD patients and 302 age-and gender-matched healthy controls. The severity of CAD patients was assessed by the Gensini scoring system according to the results of coronary arteriography. The association of rs2297630 and rs2322864 polymorphisms with genetic risk of CAD and Gensini scores were analyzed by unconditional logistic regression and multivariate linear regression respectively.
RESULTS:
There were significant differences in the genotype and allele frequencies of both rs2297630 and rs2322864 between the CAD group and healthy control (all <0.01). Regression analysis showed that rs2297630 polymorphism was associated with genetic risk of CAD and Gensini scores (all <0.01). People who carried the AA genotype suffered higher risk of CAD susceptibility and more serious coronary stenosis (all <0.01), compared with GG genotype carriers. There was also significant association between rs2322864 polymorphism and genetic risk of CAD (<0.01); those who carried the CT genotype had higher risk of CAD (<0.01), compared with TT genotype carriers. However, rs2322864 polymorphism was not associated with the severity of coronary stenosis (>0.05).
CONCLUSIONS
Gene polymorphism of CXCL12 rs2297630 is associated with the genetic risk of CAD and the severity of coronary stenosis. Moreover, the gene polymorphism of CXCR4 rs2322864 is associated with genetic risk of CAD, but not with the severity of coronary stenosis.
Chemokine CXCL12
;
genetics
;
Coronary Angiography
;
Coronary Artery Disease
;
complications
;
Coronary Stenosis
;
complications
;
genetics
;
Gene Frequency
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Polymorphism, Genetic
;
Receptors, CXCR4
;
genetics
;
Risk Factors
10.CXCL12 G801A polymorphism and cancer risk: An updated meta-analysis.
Dan MENG ; Yin-Xiang WU ; Vidhi HEERAH ; Shuang PENG ; Meng-di CHU ; Yong-Jian XU ; Wei-Ning XIONG ; Shu-Yun XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(3):319-326
Many studies have reported the relationship between CXCL12 G801A polymorphism and cancer risk, with conflicting results. In this study, we tried to clarify the possibility that this polymorphism may increase cancer risk by conducting an updated meta-analysis. PubMed and EMbase were searched for case-control studies regarding the association of the gene polymorphism and cancer risk. Data were extracted and odds ratios (ORs) with 95% confidence intervals (95% CIs) were used to assess the strength of the association. Heterogeneity among articles and publication bias was also assessed. Significantly increased risk for cancer was found (A vs. G: OR=1.26, 95% CI=1.13-1.40, P<0.01; AA+AG vs. GG: OR=1.33, 95% CI=1.16-1.52, P<0.01). In subgroup analysis, statistically elevated cancer risk was found in both Asian and Caucasian populations (for Asian, AA+AG vs. GG: OR=1.74, 95% CI=1.22-2.47, P<0.01; for Caucasian, AA+AG vs. GG: OR=1.24, 95% CI=1.09-1.42, P<0.01). Our result indicated that CXCL12 G801A polymorphism is a risk factor for cancer. To validate the finding, further large-size case-control studies are warranted.
Asian Continental Ancestry Group
;
genetics
;
Chemokine CXCL12
;
genetics
;
European Continental Ancestry Group
;
genetics
;
Genetic Predisposition to Disease
;
Humans
;
Neoplasms
;
ethnology
;
genetics
;
pathology
;
Odds Ratio
;
Polymorphism, Single Nucleotide

Result Analysis
Print
Save
E-mail