1.Effect of Evodiamine on immune function of allergic rhinitis rats by regulating CCL2/CCR2 signaling pathway.
Xiaoli WANG ; Wei LI ; Shan ZHU ; Xingchan SHI ; Wei CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):300-307
Objective To explore the effect of Evodiamine (Evo) on the immune function of allergic rhinitis (AR) rats and the regulatory mechanism on C-C motif chemokine ligand 2 (CCL2)/ C-C motif chemokine receptor 2 (CCR2) pathway. Methods The related targets of Evo-AR-immune function were screened by network pharmacology, and the protein interaction network diagram of intersecting targets was constructed. The AR rat model was established by ovalbumin (OVA) combined with aluminium hydroxide, and the rats were divided into six groups: a normal control (NC) group, a model group, a Loratadine (LOR) group, an Evodiamine low dose (Evo-L) group, a Evodiamine high dose (Evo-H) groups, and an Evo-H combined with CCL2 group. After the last administration, the symptoms of rats in each group were scored; ELISA was applied to detect the levels of histamine, immunoglobulin E (IgE), interleukin 4 (IL-4), IL-13 and interferon γ (IFN-γ); Diff-Quick staining solution was applied to detecte the number of cells in the nasal lavage fluid (NALF); hematoxylin eosin (HE) staining was applied to observe the pathological changes of nasal mucosa tissue; real-time quantitative PCR was applied to detect the levels of CCL2 and CCR2 mRNA in tissue; Western blot was applied to detect the expression levels of CCL2, CCR2 and CXC motif chemokine ligand 8 (CXCL8) proteins in nasal mucosa. Results There were eight intersection targets of EVo-AR-immune function, and protein interaction network diagram showed that CXCL8 was the core target. Compared with the NC group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in the model group were increased, while the level of IFN-γ was decreased. Compared with the model group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in LOR and Evo groups were decreased, while the level of IFN-γ was increased. Further use of CCL2 recombinant protein for compensatory experiments revealed that the improvement effect of Evo on immune function in AR rats was reversed by CCL2. Conclusion Evo can improve the immune function of AR rats, and its mechanism may be related to the inhibition of the CCL2/CCR2 pathway.
Animals
;
Receptors, CCR2/immunology*
;
Signal Transduction/drug effects*
;
Chemokine CCL2/immunology*
;
Rats
;
Rhinitis, Allergic/metabolism*
;
Immunoglobulin E/blood*
;
Quinazolines/pharmacology*
;
Male
;
Interferon-gamma
;
Rats, Sprague-Dawley
;
Interleukin-13
;
Histamine
;
Interleukin-4/immunology*
;
Disease Models, Animal
2.Combined measurement of serum macrophage M1/M2 markers and prediction of early cardiac lesions in obese children.
Chinese Journal of Contemporary Pediatrics 2025;27(11):1391-1397
OBJECTIVES:
To study the predictive value of serum macrophage M1/M2 markers for the risk of cardiac lesions in obese children.
METHODS:
A total of 60 obese children (mild-to-moderate obesity, n=32; severe obesity, n=28) and 50 healthy controls who visited the Second Affiliated Hospital of Nanchang University from June 2024 to December 2024 were included. The baseline characteristics and the levels of laboratory indicators, echocardiographic parameters, and macrophage markers (MCP-1, Arg-1, CD206, and CD86) were compared among the three groups. The correlation between macrophage marker levels and echocardiographic parameters and the influencing factors of cardiac lesions in obese children were analyzed. The receiver operating characteristic curve analysis was used to evaluate the predictive performance of each influencing factor for cardiac lesions in obese children.
RESULTS:
Multiple echocardiographic parameters differed significantly among the mild-to-moderate obesity, severe obesity, and control groups (P<0.01). Significant differences were also observed in MCP-1 and Arg-1 levels, CD206 positivity rate, and the CD86/CD206 ratio among the three groups (P<0.05). In obese children, MCP-1 and Arg-1 levels, as well as CD86 and CD206 positivity rates, were correlated with echocardiographic parameters (P<0.05). Univariate logistic regression identified MCP-1, Arg-1, the CD86/CD206 ratio, and the CD206 positivity rate as factors associated with cardiac lesions (P<0.05). The combined prediction model based on these markers yielded an area under the receiver operating characteristic curve of 0.887 (P<0.01).
CONCLUSIONS
Combined measurement of macrophage markers can predict the risk of early cardiac lesions in obese children.
Humans
;
Male
;
Female
;
Child
;
Biomarkers/blood*
;
Macrophages
;
Obesity/blood*
;
Chemokine CCL2/blood*
;
ROC Curve
;
Adolescent
;
Child, Preschool
;
Heart Diseases/diagnosis*
;
Echocardiography
3.Causal relationship between circulating cytokines and keloids: A Mendelian randomized study.
Xuan CHEN ; Kexin DENG ; Jianda ZHOU ; Can LIU
Journal of Central South University(Medical Sciences) 2025;50(7):1145-1157
OBJECTIVES:
Keloids are fibrotic skin disorders characterized by excessive collagen deposition and a high recurrence rate, closely associated with inflammatory mediators. However, existing epidemiological studies are limited by confounding factors and reverse causality, making it difficult to establish causation. This study aims to investigate the causal relationship between circulating cytokines and keloids using Mendelian randomization analysis.
METHODS:
Significant single nucleotide polymorphisms (SNPs) associated with circulating cytokines (exposures) and keloids (outcomes) were extracted from genome-wide association study (GWAS) summary datasets. Eligible SNPs were selected as instrumental variables (IVs). Exposure data were derived from a cytokine GWAS including 8 293 Finnish participants, and outcome data from a keloid GWAS based on the UK Biobank. The inverse-variance weighted (IVW) method served as the primary analytical approach to estimate causal effects, supplemented by weighted median (WME), MR-Egger regression, and other sensitivity analyses. Horizontal pleiotropy was assessed using MR-Egger regression and the MR pleiotropy residual sum and outlier (MR-PRESSO) test, while Cochran's Q test evaluated heterogeneity. Leave-one-out analysis was used to verify robustness and consistency. A reverse MR analysis was also conducted, with keloid as the exposure and cytokines as outcomes, to rule out reverse causation.
RESULTS:
IVW analysis identified significant positive causal associations between two cytokines and keloids-macrophage migration inhibitory factor (MIF) [odds ratio (OR)=2.081, 95% confidence interval (CI) 1.219 to 3.552, P=0.007] and monocyte chemoattractant protein-1 (MCP-1) (OR=1.673, 95% CI 1.036 to 2.701, P=0.035). Conversely, stem cell factor (SCF) showed a negative causal relationship with keloids (OR=0.518, 95% CI 0.269 to 0.998, P=0.049). Results from the MR-Egger and weighted median analyses were consistent with IVW findings. No evidence of horizontal pleiotropy was observed (P>0.05). Except for interleukin-6 (P=0.014), no heterogeneity was detected in other cytokines. Leave-one-out analysis further confirmed the robustness of the causal associations. In reverse MR analysis, keloids were causally related only to β-nerve growth factor (beta-NGF) (OR=1.048, 95% CI 1.002 to 1.095, P=0.039), with no heterogeneity or pleiotropy detected in most cytokines (P>0.05).
CONCLUSIONS
MIF and MCP-1 exhibit positive causal associations with keloid formation, while SCF shows a negative causal relationship. These findings provide new evidence for the causal involvement of inflammatory cytokines in keloid pathogenesis and offer potential molecular targets for developing novel keloid therapies.
Humans
;
Keloid/blood*
;
Mendelian Randomization Analysis
;
Cytokines/genetics*
;
Polymorphism, Single Nucleotide
;
Genome-Wide Association Study
;
Chemokine CCL2/genetics*
;
Interleukin-6/genetics*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Male
;
Stem Cell Factor/blood*
;
Female
;
Intramolecular Oxidoreductases
4.Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice.
Keni ZHANG ; Tong QIAO ; Lin YIN ; Ju HUANG ; Zhijun GENG ; Lugen ZUO ; Jianguo HU ; Jing LI
Journal of Southern Medical University 2025;45(10):2199-2209
OBJECTIVES:
To investigate the mechanism through which pinostrobin (PSB) alleviates dextran sulfate sodium (DSS)-induced colitis in mice.
METHODS:
C57BL/6 mice were randomized into control group, DSS model group, and PSB intervention (30, 60, and 120 mg/kg) groups. Colitis severity of the mice was assessed by examining body weight changes, disease activity index (DAI), colon length, and histopathology. The expressions of tight junction proteins ZO-1 and claudin-1 in the colon tissues were examined using immunofluorescence staining, and macrophage infiltration and polarization were analyzed with flow cytometry. ELISA and RT-qPCR were used for detecting the expressions of inflammatory factors (TNF‑α and IL-6) and chemokines (CCL2, CXCL10, and CX3CL1) in the colon tissues, and PI3K/AKT phosphorylation levels were analyzed with Western blotting. In cultured Caco-2 and RAW264.7 cells, the effect of PSB on CCL2-mediated macrophage migration was assessed using Transwell assay. Network pharmacology analysis was performed to predict the key pathways that mediate the therapeutic effect of PSB.
RESULTS:
In DSS-induced mouse models, PSB at 60 mg/kg optimally alleviated colitis, shown by reduced weight loss and DAI scores and increased colon length. PSB treatment significantly upregulated ZO-1 and claudin-1 expressions in the colon tissues, inhibited colonic macrophage infiltration, and promoted the shift of macrophage polarization from M1 to M2 type. In cultured intestinal epithelial cells, PSB significantly inhibited PI3K/AKT phosphorylation and suppressed chemokine CCL2 expression. PSB treatment obviously blocked CCL2-mediated macrophage migration of RAW264.7 cells, which could be reversed by exogenous CCL2. Network pharmacology analysis and rescue experiments confirmed PI3K/AKT and CCL2 signaling as the core targets of PSB.
CONCLUSIONS
PSB alleviates DSS-induced colitis in mice by targeting intestinal epithelial PI3K/AKT signaling, reducing CCL2 secretion, and blocking macrophage chemotaxis and migration, highlighting the potential of PSB as a novel natural compound for treatment of inflammatory bowel disease.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Colitis/drug therapy*
;
Dextran Sulfate
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Macrophages
;
Chemokine CCL2/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Caco-2 Cells
;
RAW 264.7 Cells
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/metabolism*
5.Chemokine CCL2 Mediates Neuroglial Crosstalk and Drives Chronic Pain Pathogenesis.
Junyu LU ; Yunxin SHI ; Yongkang LI ; Ziyi NIU ; Shengxi WU ; Ceng LUO ; Rou-Gang XIE
Neuroscience Bulletin 2025;41(12):2296-2321
Chronic pain, frequently comorbid with neuropsychiatric disorders, significantly impairs patients' quality of life and functional capacity. Accumulating evidence implicates the chemokine CCL2 and its receptor CCR2 as key players in chronic pain pathogenesis. This review examines the regulatory mechanisms of the CCL2/CCR2 axis in chronic pain processing at three hierarchical levels: (1) Peripheral Sensitization: CCL2/CCR2 modulates TRPV1, Nav1.8, and HCN2 channels to increase neuronal excitability and CGRP signaling and calcium-dependent exocytosis in peripheral nociceptors to transmit pain. (2) Spinal Cord Central Sensitization: CCL2/CCR2 contributes to NMDAR-dependent plasticity, glial activation, GABAergic disinhibition, and opioid receptor desensitization. (3) Supraspinal Central Networks: CCL2/CCR2 signaling axis mediates the comorbidity mechanisms of pain with anxiety and cognitive impairment within brain regions, including the ACC, CeA, NAc, and hippocampus, and it also increases pain sensitization through the descending facilitation system. Current CCL2/CCR2-targeted therapeutic strategies and their development status are discussed, highlighting novel avenues for chronic pain management.
Humans
;
Chronic Pain/physiopathology*
;
Animals
;
Neuroglia/metabolism*
;
Chemokine CCL2/metabolism*
;
Receptors, CCR2/metabolism*
6.Research progress of MCP-1 in the pathogenesis of Alzheimer's disease.
Yiming XU ; Qiuping LI ; Siyi MAO ; Kun YANG ; Shuya YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1115-1120
Alzheimer's disease (AD) is a neurodegenerative disorder with an insidious onset, primarily characterized by a progressive decline in cognitive function. MCP-1 is a cytokine with chemotactic effects on monocytes, which can regulate their migration and infiltration and participate in disease progression. Increasing evidence suggests that MCP-1 plays a key role in the progression of Alzheimer's disease and has the potential to act as an early diagnostic marker and intervention target. This paper reviews the regulatory role of MCP-1 in neuroinflammation, beta-amyloid (Aβ) deposition and Tau pathology, and explores the potential of MCP-1 as a biomarker and intervention target for the early diagnosis of Alzheimer's disease.
Alzheimer Disease/metabolism*
;
Humans
;
Chemokine CCL2/genetics*
;
Amyloid beta-Peptides/metabolism*
;
Animals
;
tau Proteins/metabolism*
;
Biomarkers/metabolism*
7.The Chemokine CCL2 Promotes Excitatory Synaptic Transmission in Hippocampal Neurons via GluA1 Subunit Trafficking.
En JI ; Yuanyuan ZHANG ; Zhiqiang LI ; Lai WEI ; Zhaofa WU ; Yulong LI ; Xiang YU ; Tian-Jia SONG
Neuroscience Bulletin 2024;40(11):1649-1666
The CC chemokine ligand 2 (CCL2, also known as MCP-1) and its cognate receptor CCR2 have well-characterized roles in chemotaxis. CCL2 has been previously shown to promote excitatory synaptic transmission and neuronal excitability. However, the detailed molecular mechanism underlying this process remains largely unclear. In cultured hippocampal neurons, CCL2 application rapidly upregulated surface expression of GluA1, in a CCR2-dependent manner, assayed using SEP-GluA1 live imaging, surface GluA1 antibody staining, and electrophysiology. Using pharmacology and reporter assays, we further showed that CCL2 upregulated surface GluA1 expression primarily via Gαq- and CaMKII-dependent signaling. Consistently, using i.p. injection of lipopolysaccharide to induce neuroinflammation, we found upregulated phosphorylation of S831 and S845 sites on AMPA receptor subunit GluA1 in the hippocampus, an effect blocked in Ccr2-/- mice. Together, these results provide a mechanism through which CCL2, and other secreted molecules that signal through G-protein coupled receptors, can directly regulate synaptic transmission.
Animals
;
Receptors, AMPA/metabolism*
;
Chemokine CCL2/metabolism*
;
Hippocampus/drug effects*
;
Neurons/drug effects*
;
Synaptic Transmission/drug effects*
;
Mice
;
Receptors, CCR2/metabolism*
;
Protein Transport/drug effects*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Mice, Knockout
;
Excitatory Postsynaptic Potentials/drug effects*
;
Rats
8.miR-877-3p causes osteoporosis in mice by inhibiting MCP-1 secretion from mouse bone marrow mesenchymal stem cells and the migration and apoptosis of T lymphocytes.
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):481-487
Objective To investigate the effects of miR-877-3p on migration and apoptotic T lymphocytes of bone mesenchymal stem cells (BMSCs). Methods The model of osteoporosis induced by bilateral ovariectomy (OVX) and sham operation was established. At 8 weeks after operation, the bone parameters of the two groups were detected by micro-CT. The levels of monocyte chemotactic protein 1(MCP-1) in BMSCs were detected by ELISA. BMSC in OVX group and sham group were co-cultured with T lymphocytes, respectively. The migration ability of T lymphocytes in the two groups was observed by TranswellTM assay with PKH26 staining and apoptosis of T lymphocytes were detected by flow cytometry. Reverse transcription PCR was used to detect the expression of miR-877-3p in BMSCs. miR-877-3p was overexpressed or down-regulated by cell transfection. The level of MCP-1 secreted by BMSCs in each group was detected by ELISA. The migration and apoptosis of T lymphocytes were detected by the above methods. Results The number of trabecular bone and bone mineral density in OVX group were lower than those in sham group. The levels of MCP-1 secretion, chemotactic and apoptotic T lymphocyte ability of BMSCs in OVX group were also lower than those in sham group. The expression level of miR-877-3p in BMSC in OVX group was higher than that in sham group. After overexpression of BMSC miR-877-3p, the levels of MCP-1 secreted from BMSCs, and apoptotic T lymphocytes decreased, while the results were opposite after down-regulation of miR-877-3p. Conclusion miR-877-3p may be one of the causes of osteoporosis by inhibiting MCP-1 secretion of BMSCs and the migration and apoptosis of T lymphocytes.
Animals
;
Female
;
Mice
;
Apoptosis/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Differentiation
;
Chemokine CCL2/metabolism*
;
Mesenchymal Stem Cells/metabolism*
;
MicroRNAs/metabolism*
;
Osteogenesis
;
Osteoporosis/genetics*
;
T-Lymphocytes/metabolism*
9.Genetic variants, circulating levels of monocyte chemoattractant protein-1 with risk of breast cancer: a case-control study and Mendelian randomization analysis.
Ke Ke MIAO ; Jun LI ; Li Na WU ; Bin ZHANG ; Meng Quan LI
Chinese Journal of Preventive Medicine 2022;56(5):590-594
Objective: To assess the association of genetic polymorphisms and circulating levels of chemokine monocyte chemoattractant protein-1 (MCP1) with risk of breast cancer. Methods: A total of 820 patients with pathologically confirmed breast cancer and 900 age-and area-of-residence-matched healthy controls who visited the hospital for routine health screening during the same period were included in this case-control study. Mendelian randomization analysis was performed using three widely followed functional single nucleotide polymorphisms (SNPs) of the MCP1 gene rs1024611, rs2857656 and rs4586 to construct instrumental variables . Results: MCP1 rs1024611 (OR=1.26, P=0.002), rs2857656 (OR=1.23, P=0.006) and rs4586 (OR=1.23, P=0.003) were significantly associated with increased risk of breast cancer. SNP rs1024611 (β=1.194, P<0.001), rs2857656 (β=1.221, P<0.001) and rs4586 (β=1.137, P<0.001) were positively correlated with higher circulating level of MCP1. The case-control study showed that an increase of 23.7 pg/ml of circulating levels of MCP1 was associated with a 0.25-fold increased risk of breast cancer. MR analysis confirmed that the genetic predicted circulating levels of MCP1 were associated with an increased risk of breast cancer, and the risk of breast cancer increased by 0.20 times with an increase of 23.7 pg/ml in MCP1. Conclusion: Genetic variants and circulating levels of MCP1 are significantly associated with the risk of breast cancer and can be used as a biomarker for early prediction of breast cancer.
Breast Neoplasms/genetics*
;
Case-Control Studies
;
Chemokine CCL2/genetics*
;
Female
;
Humans
;
Mendelian Randomization Analysis
;
Polymorphism, Single Nucleotide
10.Local and systemic inflammation triggers different outcomes of tumor growth related to infiltration of anti-tumor or pro-tumor macrophages.
Xinghan LIU ; Qi JIANG ; Sunan SHEN ; Yayi HOU
Chinese Medical Journal 2022;135(15):1821-1828
BACKGROUND:
Previous evidence suggests inflammation may be a double-edged sword with cancer-promoting and cancer suppressing function. In this study, we explore the impact of local and systemic inflammation on cancer growth.
METHODS:
Female BALB/C mice were subcutaneously implanted with foreign body (plastic plates) to build up a local inflammation and intraperitoneally injected with PolyIC or lipopolysaccharides (LPS) to build up a systemic inflammation, followed by subcutaneous injection of 5 × 10 5 colon cancer cells. Immunohistochemistry and enzyme linked immunosorbent assay were utilized to detect the Ki67 and interleukin (IL) 6, IL-1β, and monocyte chemoattractant protein-1 expression in the tumor tissues and serum, respectively. The distributions of immune cells and expression of toll-like receptors (TLRs) were evaluated by flow cytometry (FCM) and quantitative real time-polymerase chain reaction.
RESULTS:
The results showed that local inflammation induced by foreign body implantation suppressed tumor growth with decreased tumor weight ( P = 0.001), volume ( P = 0.004) and Ki67 index ( P < 0.001). Compared with the control group, myeloid-derived suppressive cells sharply decreased ( P = 0.040), while CD4 + T cells slightly increased in the tumor tissues of the group of foreign body-induced local inflammation ( P = 0.035). Moreover, the number of M1 macrophages ( P = 0.040) and expression of TLRs, especially TLR3 ( P < 0.001) and TLR4 ( P < 0.001), were significantly up-regulated in the foreign body group. Contrarily, tumor growth was significantly promoted in LPS or PolyIC-induced systemic inflammation ( P = 0.009 and 0.006). FCM results showed M1 type macrophages ( P = 0.017 and 0.006) and CD8 + T cells ( P = 0.031 and 0.023) were decreased, while M2 type macrophages ( P = 0.002 and 0.007) were significantly increased in tumor microenvironment of LPS or PolyIC-induced systemic inflammation group. In addition, the decreased expression of TLRs was detected in LPS or PolyIC group.
CONCLUSIONS
The foreign body-induced local inflammation inhibited tumor growth, while LPS or PolyIC- induced systemic inflammation promoted tumor growth. The results suggested that the different outcomes of tumor growth might be attributed to the infiltration of anti-tumor or pro-tumor immune cells, especially M1 or M2 type macrophages into tumor microenvironment.
Animals
;
Chemokine CCL2/metabolism*
;
Cytokines/metabolism*
;
Female
;
Foreign Bodies
;
Inflammation/metabolism*
;
Interleukin-6/metabolism*
;
Ki-67 Antigen/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophages/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
Neoplasms/metabolism*
;
Plastics/metabolism*
;
Toll-Like Receptor 3/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail