1.TMAO promotes disorders of lipid metabolism in psoriasis.
Rao LI ; Boyan HU ; Manyun MAO ; Wangqing CHEN ; Wu ZHU
Journal of Central South University(Medical Sciences) 2025;50(3):331-343
OBJECTIVES:
Psoriasis is associated with lipid metabolism disorders, but the underlying mechanisms remain unclear. This study aims to investigate the role of trimethylamine N-oxide (TMAO) in lipid metabolism dysregulation in psoriasis.
METHODS:
An imiquimod (IMQ)-induced psoriasis-like mouse model was used to assess lipid metabolism parameters, TMAO levels, and liver flavin monooxygenase 3 (FMO3) mRNA expression. Blood samples from healthy individuals and psoriatic patients were collected to measure serum TMAO levels and lipid profiles. To clarify the role of TMAO in the lipid metabolism disorder of mice with psoriasis model, exogenous TMAO, choline, or 3,3-dimethyl-1-butanol (DMB) were administered via intraperitoneal injections or diet in IMQ-treated mice. Liver tissues from the mouse models were subjected to RNA sequencing to identify TMAO-regulated signaling pathways.
RESULTS:
IMQ-induced psoriatic mice exhibited abnormal glucose, insulin, and lipid levels. IMQ treatment also downregulated the hepatic mRNA expression of glucose transporter 2 (Glut2) and silence information regulator 1 (Sirt1), while upregulating glucose transporter 4 (Glut4) and peroxisome proliferator-activated receptor gamma (PPARγ). Elevated serum TMAO levels were observed in both psoriatic patients and IMQ-treated mice. Additionally, liver FMO3 mRNA expression was increased in the psoriatic mouse model. In patients, TMAO levels positively correlated with Psoriasis Area and Severity Index (PASI) scores, serum triglyceride (TG), and total cholesterol (TC) levels. The intraperitoneal injection of TMAO exacerbated lipid dysregulation in IMQ-treated mice. A choline-rich diet further aggravated lipid abnormalities and liver injury in psoriatic mice, whereas DMB treatment alleviated these effects. RNA-Seq analysis demonstrated that TMAO upregulated hepatic microRNA-122 (miR-122), which may suppress the expression of gremlin 2 (GREM2), thus contributing to lipid metabolism disorder.
CONCLUSIONS
TMAO may promote lipid metabolism dysregulation in psoriasis by modulating the hepatic miR-122/GREM2 pathway.
Animals
;
Methylamines/blood*
;
Mice
;
Psoriasis/chemically induced*
;
Lipid Metabolism/drug effects*
;
Humans
;
Male
;
Liver/metabolism*
;
Female
;
Oxygenases/genetics*
;
Disease Models, Animal
;
Lipid Metabolism Disorders/etiology*
;
Adult
;
Mice, Inbred C57BL
2.Cannabidiol regulates circadian rhythm to improve sleep disorders following general anesthesia in rats.
Xinshun WU ; Jingcao LI ; Ying LIU ; Renhong QIU ; Henglin WANG ; Rui XYE ; Yang ZHANG ; Shuo LI ; Qiongyin FAN ; Huajin DONG ; Youzhi ZHANG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):744-750
OBJECTIVES:
To assess the regulatory effect of cannabidiol (CBD) on circadian rhythm sleep disorders following general anesthesia and explore its potential mechanism in a rat model of propofol-induced rhythm sleep disorder.
METHODS:
An electrode was embedded in the skull for cortical EEG recording in 24 male SD rats, which were randomized into control, propofol, CBD treatment, and diazepam treatment groups (n=6). Eight days later, a single dose of propofol (10 mg/kg) was injected via the tail vein with anesthesia maintenance for 3 h in the latter 3 groups, and daily treatment with saline, CBD or diazepam was administered via gavage; the control rats received only saline injection. A wireless system was used for collecting EEG, EMG, and body temperature data within 72 h after propofol injection. After data collection, blood samples and hypothalamic tissue samples were collected for determining serum levels of oxidative stress markers and hypothalamic expressions of the key clock proteins.
RESULTS:
Compared with the control rats, the rats with CBD treatment showed significantly increased sleep time at night (20:00-6:00), especially during the time period of 4:00-6:00 am. Compared with the rats in propofol group, which had prolonged SWS time and increased sleep episodes during 18:00-24:00 and sleep-wake transitions, the CBD-treated rats exhibited a significant reduction of SWS time and fewer SWS-to-active-awake transitions with increased SWS aspects and sleep-wake transitions at night (24:00-08:00). Diazepam treatment produced similar effect to CBD but with a weaker effect on sleep-wake transitions. Propofol caused significant changes in protein expressions and redox state, which were effectively reversed by CBD treatment.
CONCLUSIONS
CBD can improve sleep structure and circadian rhythm in rats with propofol-induced sleep disorder possibly by regulating hypothalamic expressions of the key circadian clock proteins, suggesting a new treatment option for perioperative sleep disorders.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Cannabidiol/therapeutic use*
;
Rats
;
Circadian Rhythm/drug effects*
;
Propofol/adverse effects*
;
Anesthesia, General/adverse effects*
;
Sleep Wake Disorders/chemically induced*
;
Hypothalamus/metabolism*
;
Electroencephalography
3.Qingre Lidan Jiedu Recipe improves high copper load-induced cognitive dysfunction in rats by regulating mitophagy.
Yulan WANG ; Xiang FANG ; Zeming CHEN ; Bingkun RUAN ; Xinli HAN ; Yujie TANG ; Luyao ZHU
Journal of Southern Medical University 2025;45(11):2437-2443
OBJECTIVES:
To explore the mechanisms of Qingre Lidan Jiedu Recipe (QLJR) for improving cognitive dysfunction in rats with high copper load.
METHODS:
Seventy-five male SD rats were randomized into normal control group, model group, QLJR group, penicillamine (PCA) group, and QLJR+ PCA group. Except for those in the control group, all the rats were fed a high-copper diet for 12 weeks. The effects of the treatments on cognitive function of the rats were assessed using the Barnes maze and passive avoidance tests. Hippocampal expressions of NIX, FUNDC1 and LC3 of the rats were detected using Western blotting and immunofluorescence staining, and changes in mitochondrial morphology were observed with transmission electron microscopy.
RESULTS:
Behavioral tests showed prolonged target hole latency, shortened latency to enter the dark chamber, and increased error counts of the rats in the model group, which were significantly improved in QLJR+PCA group; the error counts were significantly lower in QLJR+PCA group than in either QLJR or PCA group. Among all the groups, the hippocampal expressions of NIX and FUNDC1 were the lowest and LC3 I/II expression the highest in the model group; NIX and FUNDC1 expressions were significantly higher and LC3 I expression was lower in QLJR+PCA group than in QLJR group and PCA group. Immunofluorescence staining revealed weakened NIX and FUNDC1 expressions and enhanced LC3 expression in the hippocampus of the rats in the model group as compared with those in the normal control and QLJR+PCA groups, but their expressions did not differ significantly between QLJR and PCA groups. The rats in the model group showed obvious structural disarray of the mitochondria, which were improved in all the treatment groups.
CONCLUSIONS
QLJR improves cognitive dysfunction in rats with high copper load possibly by regulating mitophagy.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Drugs, Chinese Herbal/therapeutic use*
;
Copper/toxicity*
;
Mitophagy/drug effects*
;
Hippocampus/drug effects*
;
Cognition Disorders/drug therapy*
;
Cognitive Dysfunction/chemically induced*
4.Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis.
Bin PENG ; Xiao-Bo WU ; Zhi-Jun ZHANG ; De-Li CAO ; Lin-Xia ZHAO ; Hao WU ; Yong-Jing GAO
Neuroscience Bulletin 2025;41(5):775-789
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Animals
;
Gyrus Cinguli/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Locomotion/drug effects*
;
Neurons/drug effects*
;
Mice
;
Nitrogen/toxicity*
;
Inert Gas Narcosis/physiopathology*
;
Corpus Striatum/physiopathology*
5.Ferroptosis and liver diseases.
Xin LI ; Liang TAO ; Meijuan ZHONG ; Qian WU ; Junjia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2024;53(6):747-755
As the central organ of metabolism, the liver plays a pivotal role in the regulation of the synthesis and metabolism of various nutrients within the body. Ferroptosis, as a newly discovered type of programmed cell death caused by the accumulation of iron-dependent lipid peroxides, is involved in the physiological and pathological processes of a variety of acute and chronic liver diseases. Ferroptosis can accelerate the pathogenetic process of acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, and autoimmune hepatitis; while it can slower disease progression in advanced liver fibrosis and hepatocellular carcinoma. This suggests that targeted regulation of ferroptosis may impact the occurrence and development of various liver diseases. This article reviews the latest research progress of ferroptosis in various liver diseases, including acute liver injury, metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, autoimmune hepatitis, liver fibrosis and hepatocellular carcinoma. It aims to provide insights for the prevention and treatment of acute and chronic liver diseases through targeting ferroptosis.
Humans
;
Liver Diseases/etiology*
;
Ferroptosis/physiology*
;
Liver Neoplasms/pathology*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Cirrhosis/etiology*
;
Liver/pathology*
;
Hepatitis, Autoimmune/metabolism*
;
Liver Diseases, Alcoholic/metabolism*
6.Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell.
Feng ZHU ; Hirosato KANDA ; Hiroyuki NEYAMA ; Yuping WU ; Shigeki KATO ; Di HU ; Shaoqi DUAN ; Koichi NOGUCHI ; Yasuyoshi WATANABE ; Kazuto KOBAYASHI ; Yi DAI ; Yilong CUI
Neuroscience Bulletin 2024;40(12):1826-1842
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Animals
;
Nucleus Accumbens/drug effects*
;
Prefrontal Cortex/drug effects*
;
Nicotine/pharmacology*
;
Receptors, Opioid, mu/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Tobacco Use Disorder/metabolism*
;
Neurons/drug effects*
;
Neural Pathways/drug effects*
7.Omalizumab Treats Aspirin-Induced Asthma Complicated With Nasosinusitis and Otitis Media:Report of One Case.
Rui TANG ; Shu-Bin LEI ; Yi WANG
Acta Academiae Medicinae Sinicae 2023;45(4):699-702
Omalizumab,as a biological agent targeting IgE,is a recombinant humanized monoclonal antibody and the first targeted drug approved for treating moderate-to-severe bronchial asthma.By reviewing one case of aspirin-induced asthma complicated with nasosinusitis and otitis media,we discussed the value of omalizumab in the treatment of asthma and its complications,aiming to provide a reference for clinical practice.
Humans
;
Omalizumab/adverse effects*
;
Asthma, Aspirin-Induced
;
Asthma/drug therapy*
;
Otitis Media/drug therapy*
8.c-Jun N-terminal kinase signaling pathway in acetaminophen-induced liver injury.
Wenshang CHEN ; Jijin ZHU ; Shilai LI
Chinese Critical Care Medicine 2023;35(11):1223-1228
Acetaminophen (APAP) is the most common antipyretic, analgesic and anti-inflammatory drug, but its overdose often leads to acute liver injury, even acute liver failure, and death in some severe cases. At present, there is still a lack of specific treatments. The c-Jun N-terminal kinase (JNK) signal pathway is one of the potential therapeutic targets identified in recent years in overdose APAP-induced acute liver injury. This article reviews the JNK signaling pathway of APAP in liver metabolism, the activation of JNK signaling pathway and the amplification of oxidative stress, other pathways or cellular processes related to JNK signaling pathway, and the possible challenges of drugs targeting JNK, so as to provide direction and feasibility analysis for further research and clinical application of JNK signaling pathway targets in APAP hepatotoxicity, and to provide reference for searching for other targets.
Animals
;
Mice
;
Acetaminophen/adverse effects*
;
Chemical and Drug Induced Liver Injury
;
Chemical and Drug Induced Liver Injury, Chronic/metabolism*
;
JNK Mitogen-Activated Protein Kinases/metabolism*
;
Liver
;
Mice, Inbred C57BL
;
Signal Transduction
9.Association between physical exercise and non-alcoholic fatty liver disease in people infected with hepatitis B virus.
Huan Le CAI ; Zhi Cheng DU ; Ying WANG ; Shu Ming ZHU ; Jing Hua LI ; Wang Jian ZHANG ; Jing GU ; Yuan Tao HAO
Chinese Journal of Epidemiology 2023;44(3):445-451
Objective: To investigate the association between physical exercise and non-alcoholic fatty liver disease (NAFLD) in people infected with HBV. Methods: The information about the 3 813 participants infected with HBV, including the prevalence of NAFLD, prevalence of physical exercise and other covariates, were collected from the National Science and Technology Major Project of China during 2016-2020. The logistic regression model was used to evaluate the association between physical exercise and NAFLD in HBV infected patients, and subgroup analysis was performed to identify the effect modifiers. Results: A total of 2 259 HBV infected participants were included in the final analysis and 454 (20.10%) had NAFLD. After adjusting for covariates, we found that moderate physical exercise was a protective factor for NAFLD (OR=0.66, 95%CI: 0.46-0.94). Subgroup analysis suggested that the protective effect of moderate physical exercise on NAFLD might be stronger in women (OR=0.61, 95%CI: 0.36-1.01), those <45 years old (OR=0.24, 95%CI: 0.06-0.80), those who had low education level (OR=0.16, 95%CI: 0.04-0.49), those who had low annual income (OR=0.39, 95%CI: 0.16-0.89 for <30 000 yuan RMB; OR=0.64, 95%CI: 0.40-1.00 for 30 000-80 000 yuan RMB), those who had hypertension (OR=0.45, 95%CI: 0.21-0.88), those with BMI ≥24.0 kg/m2 (OR=0.66, 95%CI: 0.43-1.01), those who had more daily fruit or vegetable intake (OR=0.61, 95%CI: 0.38-0.97), those who had more daily meat intake (OR=0.49, 95%CI: 0.23-0.97), and those who had no smoking history (OR=0.66, 95%CI: 0.45-0.95) or passive smoking exposure (OR=0.61, 95%CI: 0.37-0.97). Conclusions: Among HBV infected patients, moderate physical exercise was negatively associated with the prevalence of NAFLD. Women, young people, those who had low education level, those who had low annual income, those with hypertension, those with high BMI, those who had more daily fruit or vegetable and meat intakes, and those who had no smoking history or passive smoking exposure might be more sensitive to the protective effect.
Humans
;
Female
;
Adolescent
;
Middle Aged
;
Non-alcoholic Fatty Liver Disease/epidemiology*
;
Hepatitis B virus
;
Risk Factors
;
Tobacco Smoke Pollution
;
Exercise
;
Hypertension
10.Discovery of miRNA and target signal molecules involved in inhibition of chlorogenic acid on N-acetyl-p-aminophenol-induced hepatotoxicity based on microRNA array.
Hong ZHANG ; Xin-Nan GU ; Meng-Juan WEI ; Li-Li JI
China Journal of Chinese Materia Medica 2023;48(4):1014-1022
This study aims to observe the effect of chlorogenic acid(CGA) on microRNA(miRNA) in the process of protecting against N-acetyl-p-aminophenol(APAP)-induced liver injury. Eighteen C57BL/6 mice were randomly assigned into a normal group, a model group(APAP, 300 mg·kg~(-1)), and a CGA(40 mg·kg~(-1)) group. Hepatotoxicity of mice was induced by intragastric administration of APAP(300 mg·kg~(-1)). The mice in the CGA group were administrated with CGA(40 mg·kg~(-1)) by gavage 1 h after APAP administration. The mice were sacrificed 6 h after APAP administration, and plasma and liver tissue samples were collected for the determination of serum alanine/aspartate aminotransferase(ALT/AST) level and observation of liver histopathology, respectively. MiRNA array combined with real-time PCR was employed to discover important miRNAs. The target genes of miRNAs were predicted via miRWalk and TargetScan 7.2, verified by real-time PCR, and then subjected to functional annotation and signaling pathway enrichment. The results showed that CGA administration lowered the serum ALT/AST level elevated by APAP and alleviate the liver injury. Nine potential miRNAs were screened out from the microarray. The expression of miR-2137 and miR-451a in the liver tissue was verified by real-time PCR. The expression of miR-2137 and miR-451a was significantly up-regulated after APAP administration, and such up-regulated expression was significantly down-regulated after CGA administration, consistent with the array results. The target genes of miR-2137 and miR-451a were predicted and verified. Eleven target genes were involved in the process of CGA protecting against APAP-induced liver injury. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment with DAVID and R language showed that the 11 target genes were enriched in Rho protein-related signal transduction, vascular patterning-related biological processes, binding to transcription factors, and Rho guanyl-nucleotide exchange factor activity. The results indicated that miR-2137 and miR-451a played an important role in the inhibition of CGA on APAP-induced hepatotoxicity.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Chlorogenic Acid
;
Acetaminophen
;
Chemical and Drug Induced Liver Injury, Chronic
;
Alanine Transaminase
;
MicroRNAs

Result Analysis
Print
Save
E-mail