1.Chinese guideline for diagnosis and management of drug-induced liver injury (2023 version).
Chinese Journal of Hepatology 2023;31(4):355-384
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. Currently, the diagnosis of DILI still follows the strategy of exclusion. Therefore, a detailed history taking and a thorough and careful exclusion of other potential causes of liver injury is the key to correct diagnosis. This guideline was developed based on evidence-based medicine provided by the latest research advances and aims to provide professional guidance to clinicians on how to identify suspected DILI timely and standardize the diagnosis and management in clinical practice. Based on the clinical settings in China, the guideline also specifically focused on DILI in chronic liver disease, drug-induced viral hepatitis reactivation, common causing agents of DILI (herbal and dietary supplements, anti-tuberculosis drugs, anti-neoplastic drugs), and signal and assessment of DILI in clinical trials.
Humans
;
Chemical and Drug Induced Liver Injury/therapy*
;
Drug-Related Side Effects and Adverse Reactions
;
Liver Failure, Acute
;
Dietary Supplements/adverse effects*
;
Risk Factors
2.Standardize the diagnosis and treatment of drug-induced liver injury, and strengthen clinical and translational research.
Chinese Journal of Hepatology 2023;31(4):337-338
As a liver disease with the most complex clinical phenotype, drug-induced liver injury (DILI) poses great challenges in diagnosis and management in clinical practice. Although guidelines based on the latest research advances can provide clinicians with guidance on the identification, diagnosis, and management of DILI, the overall level of evidence in this field is relatively low and high-level evidence is limited. Therefore, we should interpret guidelines with caution and look forward to more clinical and translational research to address the huge unmet clinical needs in DILI.
Humans
;
Translational Research, Biomedical
;
Chemical and Drug Induced Liver Injury/therapy*
;
Liver Diseases
;
Liver Function Tests
3.Comparative analysis of clinical diagnosis and treatment guidelines for drug-induced liver injury at home and abroad.
Rong Rong LI ; Meng LI ; Qiong LUO ; Xin SUN ; Cheng Hai LIU
Chinese Journal of Hepatology 2023;31(4):433-439
Drug-induced liver injury influencing factors are complex and have diverse clinical manifestations. Simple and reliable diagnostic methods are still deficient, and further classification of toxicological mechanisms is required. There are numerous pertinent discrepancies between domestic and international guidelines aimed at drug-induced liver injury diagnosis and treatment, with partial to no consensus on the content. The American Gastroenterological Association's 2021 Clinical Guidelines, the Asia-Pacific Association for the Study of the Liver's 2021 Consensus Guidelines, the Council for International Organizations of Medical Sciences' 2020 International Consensus, the European Society's Hepatology Committee's 2019 Clinical Practice Guidelines, and the 2015 Chinese Medical Association Guidelines are five influential clinical guidelines on drug-induced liver injury at home and abroad. The epidemiology, risk factors, diagnosis and evaluation, treatment management, and other contents, particularly traditional Chinese medicine, were compared and analyzed using other relevant consensus opinions or guidelines in order to improve understanding and provide a reference for clinical diagnosis and treatment of drug-induced liver injury.
Humans
;
Chemical and Drug Induced Liver Injury/therapy*
;
Medicine, Chinese Traditional
4.Advances in clinical diagnosis and treatment of drug-induced liver injury in children.
Xiao Rong PENG ; Yu Nan CHANG ; Tao QIN ; Ting Ting SHANG ; Hong Mei XU
Chinese Journal of Hepatology 2023;31(4):440-444
Drug-induced liver injury (DILI) is one of the most common adverse drug reactions that may seriously threaten the health of children and is receiving increasing clinical attention day by day. There is still no independent diagnosis and treatment guideline for DILI in children, but its clinical features are not completely similar to those in adults. This article reviews the epidemiology, clinical features, diagnosis, and treatment progress in order to provide a reference for the management of DILI in children.
Child
;
Humans
;
Chemical and Drug Induced Liver Injury/therapy*
;
Drug-Related Side Effects and Adverse Reactions
;
Liver/pathology*
;
Risk Factors
5.Statin-related drug-induced liver injury.
Xiao Yun LI ; Wei ZHONG ; Yi Min MAO
Chinese Journal of Hepatology 2023;31(6):659-663
Statins are a kind of prescription drug that is widely used to treat hyperlipidemia, coronary artery disease, and other atherosclerotic diseases. A common side effect of statin use is a mild rise in liver aminotransferases, which occurs in less than 3% of patients. Statin-related liver injury is most commonly caused by atorvastatin and simvastatin, but severe liver injury is uncommon. Therefore, understanding and evaluating hepatotoxicity and weighing the benefits and risks is of great significance to better realize the protective effect of statins.
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects*
;
Atorvastatin/adverse effects*
;
Simvastatin/adverse effects*
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Drug-Related Side Effects and Adverse Reactions/drug therapy*
6.Lyciumbarbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.
Jianjia HUANG ; Yuman BAI ; Wenting XIE ; Rongmei WANG ; Wenyue QIU ; Shuilian ZHOU ; Zhaoxin TANG ; Jianzhao LIAO ; Rongsheng SU
Journal of Zhejiang University. Science. B 2023;24(2):157-171
The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.
Animals
;
Dogs
;
Antioxidants/metabolism*
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Metabolic Networks and Pathways
;
Mitochondria/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
Lycium/chemistry*
7.Treatment response of a two-dose regimen of dose-adjusted inotuzumab ozogamicin in relapsed/refractory B-cell acute lymphoblastic leukemia.
Li hong AN ; De Feng ZHAO ; Rui Feng HOU ; Huan Huan GUAN ; Hong YAN ; Yue Hui LIN ; Chun Rong TONG ; Tong WU ; Shuang You LIU
Chinese Journal of Hematology 2023;44(11):911-916
Objective: To observe the treatment response of a two-dose regimen of inotuzumab ozogamicin (inotuzumab), a monoclonal antibody targeting CD22, for patients with heavily treated relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), including those failed or relapsed after chimeric antigen receptor (CAR) -T-cell therapy. Methods: Pediatric and adult patients who received two doses of inotuzumab and who were evaluated after inotuzumab treatment were included. Antibody infusions were performed between March 2020 and September 2022. All patients expressed CD22 antigen as detected by flow cytometry (>80% leukemic cells displaying CD22) before treatment. For adults, the maximum dosage per administration was 1 mg (with a total of two administrations). For children, the maximum dosage per administration was 0.85 mg/m(2) (no more than 1 mg/dose; total of two administrations). The total dosage administered to each patient was less than the standard dosage of 1.8 mg/m(2). Results: Twenty-one patients with R/R B-ALL were included, including five children (<18 years old) and sixteen adults. Seventeen patients presented with 5.0% -99.0% leukemic blasts in the bone marrow/peripheral blood or with extramedullary disease, and four patients were minimal residual disease (MRD) -positive. Fourteen patients underwent both CD19 and CD22 CAR-T-cell therapy, four underwent CD19 CAR-T-cell therapy, and three underwent blinatumomab therapy. Eleven patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). After inotuzumab treatment, 14 of 21 patients (66.7% ) achieved a complete response (CR, one was MRD-positive CR), and all four MRD-positive patients turned MRD-negative. Four of six patients who failed recent CD22 CAR-T-cell therapy achieved a CR after subsequent inotuzumab treatment. Seven patients (33.3% ) demonstrated no response. Grade 1-3 hepatotoxicity occurred in five patients (23.8% ), one child with no response experienced hepatic veno-occlusive disease (HVOD) during salvage transplantation and recovered completely. Conclusion: For patients with heavily treated R/R B-ALL, including those who had undergone allo-HSCT and CD19/CD22 CAR-T-cell therapy, the two-dose regimen of inotuzumab resulted in a CR rate of 66.7%, and the frequency of hepatotoxicity and HVOD was low.
Adult
;
Humans
;
Child
;
Adolescent
;
Inotuzumab Ozogamicin
;
Receptors, Chimeric Antigen
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Antibodies, Monoclonal
;
Adaptor Proteins, Signal Transducing
;
Antigens, CD19
;
Chemical and Drug Induced Liver Injury
8.Identification of Q-markers for Schisandrae Sphenantherae Fructus in treating drug-induced liver injury based on network pharmacology, fingerprint and quantitative analysis.
Lu-Jie LIN ; Ming-Xiao ZHANG ; Hua LI ; Xue-Mei LAN ; Xiao-Lu WEI ; Cong GUO ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(20):5460-5473
This study aims to establish the ultra-performance liquid chromatography(UPLC) fingerprint and multi-indicator quantitative analysis method for Schisandrae Sphenantherae Fructus(SSF) and to screen out the potential quality markers(Q-markers) of hepatoprotection based on network pharmacology. The similarity analysis was performed using the Chinese Medicine Chromatographic Fingerprint Similarity Evaluation System, which showed that the similarity of the fingerprints of 15 samples from different regions ranged from 0.981 to 0.998. Eighteen common components were identified, from which 3 differential components were selected by cluster analysis and principal component analysis. The "component-target-pathway" network was built to predict the core components related to the hepatoprotective effects. Fourteen core components were screened by network pharmacology. They acted on the targets such as AKT1, CCND1, CYP1A1, CYP3A4, MAPK1, MAPK3, NOS2, NQO1, and PTGS2 to regulate the signaling pathways of lipid metabolism and atherosclerosis, hepatitis B, interleukin-17, and tumor necrosis factor. Considering the chemical measurability, characteristics, and validity, schisantherin A, anwulignan, and schisandrin A were identified as the Q-markers. The content of schisantherin A, anwulignan, and schisandrin A in the test samples were 0.20%-0.57%, 0.13%-0.33%, and 0.42%-0.70%, respectively. Combining the fingerprint, network pharmacology, and content determination, this study predicted that schisantherin A, anwulignan, and schisandrin A were the Q-markers for the hepatoprotective effect of SSF. The results can provide reference for improving the quality evaluation standard and exploring the hepatoprotective mechanism of SSF.
Schisandra/chemistry*
;
Network Pharmacology
;
Drugs, Chinese Herbal/chemistry*
;
Chemical and Drug Induced Liver Injury/drug therapy*
9.Drug selection for simultaneous treatment of tuberculosis combined with hepatitis C virus infection.
Shi Wu MA ; Jia Rui WANG ; Ya Mei ZHU
Chinese Journal of Hepatology 2022;30(1):113-116
Clinically, patients with tuberculosis (TB) combined with hepatitis C virus (HCV) infection often require simultaneous treatment. Consequently, when anti-HCV and TB drugs are used in combination drug-drug interactions (DDIs), anti-TB drug-induced hepatotoxicity, and liver disease states need to be considered. This paper focuses on discussing the metabolic mechanisms of commonly used anti-TB and HCV drugs and the selection options of combined drugs, so as to provide rational drug use for TB patients combined with HCV infection.
Chemical and Drug Induced Liver Injury
;
Coinfection/drug therapy*
;
Hepacivirus
;
Hepatitis C/drug therapy*
;
Humans
;
Pharmaceutical Preparations
;
Tuberculosis/drug therapy*
10.Atractylenolide Ⅰ improves acetaminophen-induced acute liver injury in mice by inhibiting MAPK/NF-κB signaling pathway.
Zhi-Mei MA ; Shang-Lei LAI ; Jin-Yan ZHU ; Qin-Chao DING ; Xiao-Bing DOU ; Song-Tao LI
China Journal of Chinese Materia Medica 2022;47(4):1017-1023
This study explored the protective effect of atractylenolide Ⅰ(AO-Ⅰ) against acetaminophen(APAP)-induced acute liver injury(ALI) in mice and its underlying mechanism. C57 BL/6 J mice were randomly divided into a control group, an APAP group(500 mg·kg~(-1)), a low-dose combination group(500 mg·kg~(-1) APAP + 60 mg·kg~(-1) AO-Ⅰ), and a high-dose combination group(500 mg·kg~(-1) APAP + 120 mg·kg~(-1) AO-Ⅰ). ALI was induced by intraperitoneal injection of APAP(500 mg·kg~(-1)). AO-Ⅰ by intragastric administration was performed 2 hours before APAP treatment, and the control group received the same dose of solvent by intragastric administration or intraperitoneal injection. The protective effect of AO-Ⅰ against APAP-induced ALI was evaluated by detecting alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels in the plasma and H&E staining in liver tissues of mice. The malondialdehyde(MDA) and glutathione(GSH) content and catalase(CAT) activity in mouse liver tissues were detected to evaluate the effect of AO-Ⅰ on APAP-induced oxidative stress in the liver. The proteins in the liver p38 mitogen-activated protein kinase(p38 MAPK), c-jun N-terminal kinase(JNK), and nuclear factor kappa-B p65(NF-κB p65) signaling pathways were measured by Western blot, and the liver inflammatory cytokines interleukin-1β(IL-1β) and interleukin-6(IL-6) were detected by real-time PCR. Compared with the APAP group, the combination groups showed reduced APAP-induced ALT level and liver MDA content, potentiated liver CAT activity, and elevated GSH content. Mechanistically, AO-Ⅰ treatment significantly inhibited APAP-up-regulated MAPK phosphorylation and NF-κB p65, and significantly reduced the transcriptional activities of IL-1β and IL-6, downstream targets of NF-κB p65. AO-Ⅰ can improve APAP-induced ALI and the underlying mechanism is related to the inhibition of the MAPK/NF-κB p65 signaling pathway in APAP-challenged mice.
Acetaminophen/adverse effects*
;
Animals
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Lactones
;
Mice
;
NF-kappa B/metabolism*
;
Sesquiterpenes
;
Signal Transduction

Result Analysis
Print
Save
E-mail