1.Normalized Creatinine-to-Cystatin C Ratio and Risk of Cardiometabolic Multimorbidity in Middle-Aged and Older Adults: Insights from the China Health and Retirement Longitudinal Study
Honglin SUN ; Zhenyu WU ; Guang WANG ; Jia LIU
Diabetes & Metabolism Journal 2025;49(3):448-461
Background:
Normalized creatinine-to-cystatin C ratio (NCCR) was reported to approximate relative skeletal muscle mass and diabetes risk. However, the association between NCCR and cardiometabolic multimorbidity (CMM) remains elusive. This study aimed to explore their relationship in a large-scale prospective cohort.
Methods:
This study included 5,849 middle-age and older participants from the China Health and Retirement Longitudinal Study (CHARLS) enrolled between 2011 and 2012. The baseline NCCR was determined as creatinine (mg/dL)/cystatin C (mg/L)×10/body mass (kg). CMM was defined as the simultaneous occurrence of two or more of the following conditions: heart disease, stroke, and type 2 diabetes mellitus. Logistic regression analysis and Cox regression analysis were employed to estimate the relationship between NCCR and CMM. The joint effect of body mass index and NCCR on the risk of CMM were further analyzed.
Results:
During a median 4-year follow-up, 227 (3.9%) participants developed CMM. The risk of CMM was significantly decreased with per standard deviation increase of NCCR (odds ratio, 0.72; 95% confidence interval, 0.62 to 0.85) after adjustment for confounders (P<0.001). Further sex-specific analysis found significant negative associations between NCCR and CMM in female either without or with one CMM component at baseline, which was attenuated in males but remained statistically significant among those with one basal CMM component. Notably, non-obese individuals with high NCCR levels had the lowest CMM risk compared to obese counterparts with low NCCR levels in both genders.
Conclusion
High NCCR was independently associated with reduced risk of CMM in middle-aged and older adults in China, particularly females.
2.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
3.Normalized Creatinine-to-Cystatin C Ratio and Risk of Cardiometabolic Multimorbidity in Middle-Aged and Older Adults: Insights from the China Health and Retirement Longitudinal Study
Honglin SUN ; Zhenyu WU ; Guang WANG ; Jia LIU
Diabetes & Metabolism Journal 2025;49(3):448-461
Background:
Normalized creatinine-to-cystatin C ratio (NCCR) was reported to approximate relative skeletal muscle mass and diabetes risk. However, the association between NCCR and cardiometabolic multimorbidity (CMM) remains elusive. This study aimed to explore their relationship in a large-scale prospective cohort.
Methods:
This study included 5,849 middle-age and older participants from the China Health and Retirement Longitudinal Study (CHARLS) enrolled between 2011 and 2012. The baseline NCCR was determined as creatinine (mg/dL)/cystatin C (mg/L)×10/body mass (kg). CMM was defined as the simultaneous occurrence of two or more of the following conditions: heart disease, stroke, and type 2 diabetes mellitus. Logistic regression analysis and Cox regression analysis were employed to estimate the relationship between NCCR and CMM. The joint effect of body mass index and NCCR on the risk of CMM were further analyzed.
Results:
During a median 4-year follow-up, 227 (3.9%) participants developed CMM. The risk of CMM was significantly decreased with per standard deviation increase of NCCR (odds ratio, 0.72; 95% confidence interval, 0.62 to 0.85) after adjustment for confounders (P<0.001). Further sex-specific analysis found significant negative associations between NCCR and CMM in female either without or with one CMM component at baseline, which was attenuated in males but remained statistically significant among those with one basal CMM component. Notably, non-obese individuals with high NCCR levels had the lowest CMM risk compared to obese counterparts with low NCCR levels in both genders.
Conclusion
High NCCR was independently associated with reduced risk of CMM in middle-aged and older adults in China, particularly females.
4.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
5.Normalized Creatinine-to-Cystatin C Ratio and Risk of Cardiometabolic Multimorbidity in Middle-Aged and Older Adults: Insights from the China Health and Retirement Longitudinal Study
Honglin SUN ; Zhenyu WU ; Guang WANG ; Jia LIU
Diabetes & Metabolism Journal 2025;49(3):448-461
Background:
Normalized creatinine-to-cystatin C ratio (NCCR) was reported to approximate relative skeletal muscle mass and diabetes risk. However, the association between NCCR and cardiometabolic multimorbidity (CMM) remains elusive. This study aimed to explore their relationship in a large-scale prospective cohort.
Methods:
This study included 5,849 middle-age and older participants from the China Health and Retirement Longitudinal Study (CHARLS) enrolled between 2011 and 2012. The baseline NCCR was determined as creatinine (mg/dL)/cystatin C (mg/L)×10/body mass (kg). CMM was defined as the simultaneous occurrence of two or more of the following conditions: heart disease, stroke, and type 2 diabetes mellitus. Logistic regression analysis and Cox regression analysis were employed to estimate the relationship between NCCR and CMM. The joint effect of body mass index and NCCR on the risk of CMM were further analyzed.
Results:
During a median 4-year follow-up, 227 (3.9%) participants developed CMM. The risk of CMM was significantly decreased with per standard deviation increase of NCCR (odds ratio, 0.72; 95% confidence interval, 0.62 to 0.85) after adjustment for confounders (P<0.001). Further sex-specific analysis found significant negative associations between NCCR and CMM in female either without or with one CMM component at baseline, which was attenuated in males but remained statistically significant among those with one basal CMM component. Notably, non-obese individuals with high NCCR levels had the lowest CMM risk compared to obese counterparts with low NCCR levels in both genders.
Conclusion
High NCCR was independently associated with reduced risk of CMM in middle-aged and older adults in China, particularly females.
6.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
7.Normalized Creatinine-to-Cystatin C Ratio and Risk of Cardiometabolic Multimorbidity in Middle-Aged and Older Adults: Insights from the China Health and Retirement Longitudinal Study
Honglin SUN ; Zhenyu WU ; Guang WANG ; Jia LIU
Diabetes & Metabolism Journal 2025;49(3):448-461
Background:
Normalized creatinine-to-cystatin C ratio (NCCR) was reported to approximate relative skeletal muscle mass and diabetes risk. However, the association between NCCR and cardiometabolic multimorbidity (CMM) remains elusive. This study aimed to explore their relationship in a large-scale prospective cohort.
Methods:
This study included 5,849 middle-age and older participants from the China Health and Retirement Longitudinal Study (CHARLS) enrolled between 2011 and 2012. The baseline NCCR was determined as creatinine (mg/dL)/cystatin C (mg/L)×10/body mass (kg). CMM was defined as the simultaneous occurrence of two or more of the following conditions: heart disease, stroke, and type 2 diabetes mellitus. Logistic regression analysis and Cox regression analysis were employed to estimate the relationship between NCCR and CMM. The joint effect of body mass index and NCCR on the risk of CMM were further analyzed.
Results:
During a median 4-year follow-up, 227 (3.9%) participants developed CMM. The risk of CMM was significantly decreased with per standard deviation increase of NCCR (odds ratio, 0.72; 95% confidence interval, 0.62 to 0.85) after adjustment for confounders (P<0.001). Further sex-specific analysis found significant negative associations between NCCR and CMM in female either without or with one CMM component at baseline, which was attenuated in males but remained statistically significant among those with one basal CMM component. Notably, non-obese individuals with high NCCR levels had the lowest CMM risk compared to obese counterparts with low NCCR levels in both genders.
Conclusion
High NCCR was independently associated with reduced risk of CMM in middle-aged and older adults in China, particularly females.
8.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
9.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
10.Risk prediction of Reduning Injection batches by near-infrared spectroscopy combined with multiple machine learning algorithms.
Wen-Yu JIA ; Feng TONG ; Heng-Xu LIU ; Shu-Qin JIN ; Yong-Chao ZHANG ; Chen-Feng ZHANG ; Zhen-Zhong WANG ; Xin ZHANG ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(2):430-438
In this paper, near-infrared spectroscopy(NIRS) was employed to analyze 129 batches of commercial products of Reduning Injection. The batch reporting rate was estimated according to the report of Reduning Injection in the direct adverse drug reaction(ADR) reporting system of the drug marketing authorization holder of the Center for Drug Reevaluation of the National Medical Products Administration(National Center for ADR Monitoring) from August 2021 to August 2022. According to the batch reporting rate, the samples of Reduning Injection were classified into those with potential risks and those being safe. No processing, random oversampling(ROS), random undersampling(RUS), and synthetic minority over-sampling technique(SMOTE) were then employed to balance the unbalanced data. After the samples were classified according to appropriate sampling methods, competitive adaptive reweighted sampling(CARS), successive projections algorithm(SPA), uninformative variables elimination(UVE), and genetic algorithm(GA) were respectively adopted to screen the features of spectral data. Then, support vector machine(SVM), logistic regression(LR), k-nearest neighbors(KNN), naive bayes(NB), random forest(RF), and artificial neural network(ANN) were adopted to establish the risk prediction models. The effects of the four feature extraction methods on the accuracy of the models were compared. The optimal method was selected, and bayesian optimization was performned to optimize the model parameters to improve the accuracy and robustness of model prediction. To explore the correlations between potential risks of clinical use and quality test data, TreeNet was employed to identify potential quality parameters affecting the clinical safety of Reduning Injection. The results showed that the models established with the SVM, LR, KNN, NB, RF, and ANN algorithms had the F1 scores of 0.85, 0.85, 0.86, 0.80, 0.88, and 0.85 and the accuracy of 88%, 88%, 88%, 85%, 91%, and 88%, respectively, and the prediction time was less than 5 s. The results indicated that the established models were accurate and efficient. Therefore, near infrared spectroscopy combined with machine learning algorithms can quickly predict the potential risks of clinical use of Reduning Injection in batches. Three key quality parameters that may affect clinical safety were identified by TreeNet, which provided a scientific basis for improving the safety standards of Reduning Injection.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Machine Learning
;
Algorithms
;
Humans
;
Quality Control

Result Analysis
Print
Save
E-mail