1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
4.Expert consensus on the evaluation and rehabilitation management of shoulder syndrome after neek dissection for oral and maxillofacial malignancies
Jiacun LI ; Moyi SUN ; Jiaojie REN ; Wei GUO ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Wei SHANG ; Shaoyan LIU ; Jie ZHANG ; Jicheng LI ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Qing XI ; Bing HAN ; Huaming MAI ; Yanping CHEN ; Jie ZHANG ; Yadong WU ; Chao LI ; Changming AN ; Chuanzheng SUN ; Hua YUAN ; Fan YANG ; Haiguang YUAN ; Dandong WU ; Shuai FAN ; Fei LI ; Chao XU ; Wei WEI
Journal of Practical Stomatology 2024;40(5):597-607
Neck dissection(ND)is one of the main treatment methods for oral and maxillofacial malignancies.Although ND type is in con-stant improvement,but intraoperative peal-pull-push injury of the accessory nerve,muscle,muscle membrane,fascia and ligament induced shoulder syndrome(SS)is still a common postoperative complication,combined with the influence of radiochemotherapy,not only can cause pain,stiffness,numbness,limited dysfunction of shoulder neck and arm,but also may have serious impact on patient's life quality and phys-ical and mental health.At present,there is still a lack of a systematic evaluation and rehabilitation management program for postoperative SS of oral and maxillofacial malignant tumors.Based on the previous clinical practice and the current available evidence,refer to the relevant lit-erature at home and abroad,the experts in the field of maxillofacial tumor surgery and rehabilitation were invited to discuss,modify and reach a consenusus on the etiology,assessment diagnosis,differential diagnosis,rehabilitation strategy and prevention of SS,in order to provide clinical reference.
5.Clinical characteristics and serological typing of invasive Haemophilus in-fluenzae infection in children
Jin-Hua MENG ; Wen-Ling LI ; Zhi-Yong SUN ; Chao GUO ; Yu FAN ; Lei ZHU
Chinese Journal of Infection Control 2024;23(6):700-705
Objective To analyze the clinical and serological typing characteristics of invasive Haemophilus influ-enzae(Hin)infection in children.Methods Clinical data of 34 children with invasive Hin infection admitted to Children's Hospital of Shanxi from 2015 to 2021 were analyzed retrospectively.According to clinical diagnosis,they were divided into meningitis infection group and non-meningitis infection group.General data,symptoms,signs,laboratory serological indicators,and Hin serum typing characteristics of children,as well as differences in inflammatory factor level between the two groups were analyzed.Results Among the 34 patients,22 were males and 12 were females,with a male to female ratio of 1.83∶1.Children aged ≤36 months accounted for 82.35%.The levels of procalcitonin(PCT)(23.71[4.10,77.80])ng/mL and C-reactive protein(CRP)(200.00[164.55,200.00])mg/L in children in the meningitis infection group were higher than those in the non-meningitis group(1.08[0.49,6.00]ng/mL,69.46[48.09,125.63]mg/L,respectively),with statistically significant differences(both P<0.05).The platelet(PLT)count in the non-meningitis group([312.56±186.81]× 109/L)was higher than that in the meningitis group([183.28±165.67]× 109/L),with statistically significant difference(P<0.05).There was no statistically significant difference in white blood cell(WBC)count and neutrophil(NEUT)percentage between two groups(both P>0.05).Among the isolated Hin strains,27,2,and 2 strains were type b(Hib),e and f,respectively;3 strains were not typed;serotype a,c and d strains were not found.There was no statistically significant difference in the distribution of typeable Hin strains between the two groups(x2=0.25,P>0.05).There was no statistically significant difference in the constituent rate of typeable Hin strains between male and fe-male children(67.74%vs 32.26%,x2=1.42,P>0.05).Conclusion The majority of invasive Hin infection cases are children under 3 years old,and the predominant strain is type b.CRP and PCT levels of infected children in-creased significantly,while PLT is significantly lower than that of non-infected children,which has certain clinical diagnostic value and can provide effective support for early classified diagnosis and anti-infection treatment of inva-sive infectious diseases combined with other clinical testing items.
6.Antimicrobial resistance of bacteria from blood specimens:surveillance re-port from Hunan Province Antimicrobial Resistance Surveillance System,2012-2021
Hong-Xia YUAN ; Jing JIANG ; Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Xing-Wang NING ; Jun LIU ; Guo-Min SHI ; Man-Juan TANG ; Jing-Min WU ; Huai-De YANG ; Ming ZHENG ; Jie-Ying ZHOU ; Nan REN ; An-Hua WU ; Xun HUANG
Chinese Journal of Infection Control 2024;23(8):921-931
Objective To understand the change in distribution and antimicrobial resistance of bacteria isolated from blood specimens of Hunan Province,and provide for the initial diagnosis and treatment of clinical bloodstream infection(BSI).Methods Data reported from member units of Hunan Province Antimicrobial Resistance Survei-llance System from 2012 to 2021 were collected.Bacterial antimicrobial resistance surveillance method was imple-mented according to the technical scheme of China Antimicrobial Resistance Surveillance System(CARSS).Bacteria from blood specimens and bacterial antimicrobial susceptibility testing results were analyzed by WHONET 5.6 soft-ware and SPSS 27.0 software.Results A total of 207 054 bacterial strains were isolated from blood specimens from member units in Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021,including 107 135(51.7%)Gram-positive bacteria and 99 919(48.3%)Gram-negative bacteria.There was no change in the top 6 pathogenic bacteria from 2012 to 2021,with Escherichia coli(n=51 537,24.9%)ranking first,followed by Staphylococcus epidermidis(n=29 115,14.1%),Staphylococcus aureus(n=17 402,8.4%),Klebsiella pneu-moniae(17 325,8.4%),Pseudomonas aeruginosa(n=4 010,1.9%)and Acinetobacter baumannii(n=3 598,1.7%).The detection rate of methicillin-resistant Staphylococcus aureus(MRSA)decreased from 30.3%in 2015 to 20.7%in 2021,while the detection rate of methicillin-resistant coagulase-negative Staphylococcus(MRCNS)showed an upward trend year by year(57.9%-66.8%).No Staphylococcus was found to be resistant to vancomy-cin,linezolid,and teicoplanin.Among Gram-negative bacteria,constituent ratios of Escherichia coli and Klebsiella pneumoniae were 43.9%-53.9%and 14.2%-19.5%,respectively,both showing an upward trend(both P<0.001).Constituent ratios of Pseudomonas aeruginosa and Acinetobacter baumannii were 3.6%-5.1%and 3.0%-4.5%,respectively,both showing a downward trend year by year(both P<0.001).From 2012 to 2021,resistance rates of Escherichia coli to imipenem and ertapenem were 1.0%-2.0%and 0.6%-1.1%,respectively;presenting a downward trend(P<0.001).The resistant rates of Klebsiella pneumoniae to meropenem and ertapenem were 7.4%-13.7%and 4.8%-6.4%,respectively,presenting a downward trend(both P<0.001).The resistance rates of Pseudomonas aeruginosa and Acinetobacter baumannii to carbapenem antibiotics were 7.1%-15.6%and 34.7%-45.7%,respectively.The trend of resistance to carbapenem antibiotics was relatively stable,but has de-creased compared with 2012-2016.The resistance rates of Escherichia coli to the third-generation cephalosporins from 2012 to 2021 were 41.0%-65.4%,showing a downward trend year by year.Conclusion The constituent ra-tio of Gram-negative bacillus from blood specimens in Hunan Province has been increasing year by year,while the detection rate of carbapenem-resistant Gram-negative bacillus remained relatively stable in the past 5 years,and the detection rate of coagulase-negative Staphylococcus has shown a downward trend.
7.Antimicrobial resistance of bacteria from cerebrospinal fluid specimens:surveillance report from Hunan Province Antimicrobial Resistance Survei-llance System,2012-2021
Jun LIU ; Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Xing-Wang NING ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; Nan REN ; An-Hua WU ; Xun HUANG ; Man-Juan TANG
Chinese Journal of Infection Control 2024;23(8):932-941
Objective To investigate changes in the distribution and antimicrobial resistance of bacteria isolated from cerebrospinal fluid(CSF)specimens in Hunan Province,and provide reference for correct clinical diagnosis and rational antimicrobial use.Methods Data reported by member units of Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021 were collected according to China Antimicrobial Resistance Surveillance Sys-tem(CARSS)technical scheme.Data of bacteria isolated from CSF specimens and antimicrobial susceptibility tes-ting results were analyzed with WHONET 5.6 and SPSS 20.0 software.Results A total of 11 837 bacterial strains were isolated from CSF specimens from member units of Hunan Province Antimicrobial Resistance Surveillance Sys-tem from 2012 to 2021.The top 5 strains were coagulase-negative Staphylococcus(n=6 397,54.0%),Acineto-bacter baumannii(n=764,6.5%),Staphylococcus aureus(n=606,5.1%),Enterococcus faecium(n=465,3.9%),and Escherichia coli(n=447,3.8%).The detection rates of methicillin-resistant coagulase-negative Staphyloco-ccus(MRCNS)and methicillin-resistant Staphylococcus aureus(MRSA)were 58.9%-66.3%and 34.4%-62.1%,respectively.No Staphylococcus spp.were found to be resistant to vancomycin,linezolid,and teicoplanin.The de-tection rate of Enterococcus faecium was higher than that of Enterococcus faecalis,and the resistance rates of En-terococcus f aecium to penicillin,ampicillin,high concentration streptomycin and levofloxacin were all higher than those of Enterococcus faecalis(all P=0.001).Resistance rate of Streptococcus pneumoniae to penicillin was 85.0%,at a high level.Resistance rate of Escherichia coli to ceftriaxone was>60%,while resistance rates to enzyme inhibitors and carbapenem antibiotics were low.Resistance rate of Klebsiella pneumoniae to ceftriaxone was>60%,to en-zyme inhibitors piperacillin/tazobactam and cefoperazone/sulbactam was>30%,to carbapenem imipenem and me-ropenem was about 30%.Resistance rates of Acinetobacter baumannii to most tested antimicrobial agents were>60%,to imipenem and meropenem were 59.0%-79.4%,to polymyxin B was low.Conclusion Among the bac-teria isolated from CSF specimens,coagulase-negative Staphylococcus accounts for the largest proportion,and the overall resistance of pathogenic bacteria is relatively serious.Bacterial antimicrobial resistance surveillance is very important for the effective treatment of central nerve system infection.
8.Antimicrobial resistance of bacteria from intensive care units:surveillance report from Hunan Province Antimicrobial Resistance Surveillance Sys-tem,2012-2021
Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Jun LIU ; Xing-Wang NING ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; Nan REN ; Xun HUANG ; An-Hua WU ; Jian-Dang ZHOU
Chinese Journal of Infection Control 2024;23(8):942-953
Objective To investigate the distribution and antimicrobial susceptibility of clinically isolated bacteria from intensive care units(ICUs)in hospitals of Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021.Methods According to China Antimicrobial Resistance Surveillance System,data of clinically isolated bacterial strains and antimicrobial susceptibility testing results of bacteria from ICUs reported by all member units of Hunan Province Antimicrobial Resistance Surveillance System were analyzed with WHONET 2022 software.Results From 2012 to 2021,the total number of bacteria isolated from ICUs of member units of the Hunan Province Antimi-crobial Resistance Surveillance System was 5 777-22 369,with Gram-negative bacteria accounting for 76.1%-78.0%annually.Staphylococcus aureus ranked first among isolated Gram-positive bacteria each year.The top 5 bacteria among Gram-negative bacteria were Acinetobacter baumannii,Klebsiella pneumoniae,Escherichia coli,Pseudo-monas aeruginosa,and Stenotrophomonas maltophilia.Detection rate of methicillin-resistant Staphylococcus aureus showed a downward trend year by year.No Staphylococcus spp.were found to be resistant to vancomycin,teico-planin and linezolid.Detection rates of vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Entero-coccus faecium were 0.6-1.1%and 0.6%-2.2%,respectively.Resistance rates of Escherichia coli and Kleb-siella pneumoniae to imipenem were 3.1%-5.7%and 7.7%-20.9%,respectively.Resistance rates of Pseudo-monasaeruginosa and Acinetobacter baumannii to imipenem were 24.6%-40.1%and 76.1%-80.9%,respective-ly.Detection rates of carbapenem-resistant Pseudomonas aeruginosa declined year by year.Acinetobacter baumannii maintained high susceptibility to polymyxin B,with resistance rate<10%.Conclusion Antimicrobial resistance of bacteria from ICUs is serious.Carbapenem-resistant Enterobacteriales has an upward trend after 2019.It is nece-ssary to strengthen the surveillance of bacterial resistance and carry out multidisciplinary collaboration.
9.Antimicrobial resistance of Enterococcus spp.:surveillance report from Hunan Province Antimicrobial Resistance Surveillance System,2012-2021
Chen-Chao FU ; Li-Hua CHEN ; Chen LI ; Yan-Ming LI ; Jun LIU ; Xing-Wang NING ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; An-Hua WU ; Xun HUANG ; Nan REN
Chinese Journal of Infection Control 2024;23(8):954-962
Objective To understand the antimicrobial resistance of clinically isolated Enterococcus spp.in Hunan Province.Methods Surveillance data of Enterococcus spp.resistance from member units of Hunan Provincial Anti-microbial Resistance Surveillance System from 2012 to 2021 were collected.Data were cleaned according to a unified method,and WHONET 5.6 software was adopted for statistical analysis.Results From 2012 to 2021,a total of 110 652 non-repetitive Enterococcus spp.strains were included in the analysis,mainly Enterococcus faecalis and Enterococcus faecium,accounting for 46.9%(n=37 774)and 45.9%(n=36 968),respectively,followed by En-terococcus avium(2.5%,n=1 982),Enterococcus gallinarum(1.8%,n=1 428),and Enterococcus casseliflavus(1.5%,n=1 185).The main specimen sources of Enterococcus spp.was urine(51.8%,n=57 350),followed by secretions(9.6%,n=10 660)and bile(8.5%,n=9 377).From 2012 to 2021,the resistance rates of Enteroco-ccus faecalis to ampicillin,teicoplanin,and vancomycin were 5.5%-12.0%,1.3%-2.0%,and 0.6%-1.4%,respectively.The resistance rates of Enterococcus faecium to ampicillin,teicoplanin,and vancomycin were 69.2%-85.0%,1.5%-2.8%,and 0.7%-2.5%,respectively.Except for linezolid and minocycline,the resistance rates of Enterococcus faecium to tested antimicrobial agents were all higher than those of Enterococcus faecalis.The re-sistance rates of Enterococcus faecalis and Enterococcus faecium to vancomycin decreased from 1.4%and 2.1%in 2012 to 0.6%and 0.7%in 2021,respectively,presenting a decreased trend.Conclusion Clinically isolated En-terococcus spp.maintain high antimicrobial susceptibility to vancomycin and teicoplanin.Resistance rates of Entero-coccus faecalis and Enterococcus faecium to vancomycin present decreased trends.
10.Antimicrobial resistance of bacteria isolated from bile:surveillance report from Hunan Province Antimicrobial Resistance Surveillance System,2012-2021
Chen LI ; Li-Hua CHEN ; Yan-Ming LI ; Jun LIU ; Xing-Wang NING ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; Chen-Chao FU ; Nan REN ; Xun HUANG ; An-Hua WU
Chinese Journal of Infection Control 2024;23(8):963-974
Objective To analyze the distribution and changing trend of antimicrobial resistance of bacteria isolated from bile from Hunan Province Antimicrobial Resistance Surveillance System.Methods Data of pathogens isolated from bile from Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021 were collected.The constituent of bacteria and antimicrobial susceptibility testing results were analyzed by WHONET 5.6 software.Changes in antimicrobial resistance was analyze by trend chi-square test.Results The major pathogenic bacteria isolated from bile were Gram-negative bacteria,accounting for 70.84%.The top three isolated Gram-negative pathogens were Escherichia coli(30.14%),Klebsiella pneumoniae(12.15%),and Pseudomonas aeruginosa(5.18%),and the top two Gram-positive bacteria were Enterococcus faecium(10.34%)and Enterococcus faecalis(9.52%).The resistance rates of Klebsiella pneumoniae and Escherichia coli to imipenem were highest in 2012-2013,being 15.7%and 14.9%,respectively,presenting an downward trend(P<0.05);resistance rates to piperacillin/tazobactam and cefoperazone/sulbactam were<24%,presenting an upward trend year by year(P<0.05);the sus-ceptibility rate to amikacin was>94%,to levofloxacin and ciprofloxacin was 15.5%-65.2%.The highest resis-tance rate of Pseudomonas aeruginosa to imipenem(32.0%)was higher than that of meropenem(22.9%),resis-tance rates to piperacillin/tazobactam and cefoperazone/sulbactam were<19%.The highest resistance rates of Acinetobacter baumannii to imipenem and meropenem were 59.4%and 62.6%,respectively,resistance rate to cefo-perazone/sulbactam was<48%,presenting an upward trend(P<0.05);the highest resistance rate to ciprofloxa-cin(60.8%)was higher than levofloxacin(48.7%);resistance rate to tigecycline was<8%.The resistance rates of Enterococcus faecium to penicillin and ampicillin were both higher than those of Enterococcus faecalis,presenting an upward trend(P<0.05).Resistance rate of Enterococcus faecium to vancomycin was lower than that of Entero-coccus faecalis.The resistance rates of Enterococcus faecium to vancomycin and linezolid were 0.5%-4.5%and 0.5%-3.4%,respectively;resistance rates of Enterococcus faecalis to vancomycin and linezolid were 0.2%-1.7%and 0.5%-3.5%,respectively(both P<0.05),all presenting a downward trend(all P<0.05).Conclusion Pathogenic bacteria isolated from bile are mainly related to the intestinal flora.The resistance rates of Enterococcus faecalis and Enterococcus faecium to vancomycin and linezolid as well as resistance rate of Enterobacterales to car-bapenem antibiotics all present a downward trend.

Result Analysis
Print
Save
E-mail