1.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Sequencing and analysis of the complete mitochondrial genome of Bulinus globosus
Peijun QIAN ; Mutsaka-Makuvaza MASCELINE JENIPHER ; Chao LÜ ; Yingjun QIAN ; Wenya WANG ; Shenglin CHEN ; Andong XU ; Jingbo XUE ; Jing XU ; Xiaonong ZHOU ; Midzi NICHOLAS ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(2):116-126
Objective To analyze the structural and phylogenetic characteristics of the mitochondrial genome from Bulinus globosus, so as to provide a theoretical basis for classification and identification of species within the Bulinus genus, and to provide insights into understanding of Bulinus-schistosomes interactions and the mechanisms of parasite transmission. Methods B. globosus samples were collected from the Ruya River basin in Zimbabwe. Mitochondrial DNA was extracted from B. globosus samples and the corresponding libraries were constructed for high-throughput sequencing on the Illumina NovaSeq 6000 platform. After raw sequencing data were subjected to quality control using the fastp software, genome assembly was performed using the A5-miseq and SPAdes tools, and genome annotation was conducted using the MITOS online server. Circular maps and sequence plots of the mitochondrial genome were generated using the CGView and OGDRAW software, and the protein conservation motifs and structures were analyzed using the TBtools software. Base composition and codon usage bias were analyzed and visualized using the software MEGA X and the ggplot2 package in the R software. In addition, a phylogenetic tree was created in the software MEGA X after sequence alignment with the software MAFFT 7, and visualized using the software iTOL. Results The mitochondrial genome of B. globosus was a 13 730 bp double-stranded circular molecule, containing 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes, with a marked AT preference. The mitochondrial genome composition of B. globosus was similar to that of other species within the Bulinus genus. Phylogenetic analysis revealed that the complete mitochondrial genome sequence of B. globosus was clustered with B. truncatus, B. nasutus, and B. ugandae into the same evolutionary clade, and gene superfamily analysis showed that the metabolism-related proteins of B. globosus were highly conserved, notably the cytochrome c oxidase family, which showed a significant consistency. Conclusions This is the first whole mitochondrial genome sequencing to decode the compositional features of the mitochondrial genome of B. globosus from Zimbabwe and its evolutionary relationship within the Bulinus genus, which provides important insights for further understanding of the phylogeny and mitochondrial genome characteristics of the Bulinus genus.
4.Guidelines for vaccination of kidney transplant candidates and recipients in China
Jian Zhang ; Jun Lin ; Weijie Zhang ; Xiaoming Ding ; Xiaopeng Hu ; Wujun Xue
Organ Transplantation 2025;16(2):177-190
In order to further standardize the vaccination of kidney transplant candidates and recipients in China, the Branch of Organ Transplantation of Chinese Medical Association has organized experts in kidney transplantation and infectious diseases. Based on the "Vaccination of Solid Organ Transplant Candidates and Recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice", and in combination with the clinical reality of infectious diseases and vaccination after organ transplantation in China, as well as referring to relevant recommendations from home and abroad in recent years, these guidelines are formulated from aspects such as epidemiology, types of vaccines, vaccination principles, target population, and specific vaccine administration. The "Guidelines for Vaccination of Kidney Transplant Candidates and Recipients in China" aims to provide theoretical reference for medical workers in the field of kidney transplantation in China, regarding the vaccination of kidney transplant candidates and recipients. It is expected to better guide the vaccination of kidney transplant candidates and recipients, reduce the risk of postoperative infection, and improve survival outcomes.
5.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates.
6.Evaluation of myopia prevention and control effect of defocus incorporated multiple segments lenses in children with monocular myopia
Lu JIANG ; Mengling PENG ; Miao MA ; Xue YUAN ; Chao ZHOU
International Eye Science 2025;25(10):1683-1687
AIM:To compare the changes in diopters and axial length after 1 a of wearing defocus incorporated multiple segments(DIMS)lenses or single vision(SV)spectacle lenses in children with monocular myopia.METHODS:In this retrospective case group study, monocular myopia children aged from 6 to 14 years old in Hankou Aier Eye Hospital from October 2020 to October 2022, who were fitted with DIMS lens(n=52)or single-vision(SV)spectacle lenses(n=49)were collected. The spherical degree of myopia eyes ranged from -4.00 D to -0.50 D and the nonmyopic eyes ranged from 0 to +1.00 D, astigmatism in all eyes ranged from 0 to -2.00 D. The DIMS lens group was classified into DIMS-myopia group(the myopic eyes)and DIMS-nonmyopia group(the nonmyopic eyes). The SV lens group was also divided into SV-myopia group and SV-nonmyopia group. The changes in spherical equivalent refraction(SER)and axial length(AL)of each group were compare before and after wearing lenses for 1 a, and variations in SER and AL of both eye among groups were analzed.RESULTS: After wearing lenses for 1 a, the changes of SER in the DIMS-myopic group and the DIMS-nonmyopic group were -0.41±0.44 and -0.26±0.54 D, respectively, and the changes of AL were 0.18±0.20 and 0.15±0.15 mm, respectively. SER changes were -0.74±0.63 and -0.70±0.68 D in SV-myopic group and SV-nonmyopic group, and AL changes were 0.30±0.28 and 0.31±0.28 mm. The changes of SER and AL in the DMS-myopic and non-myopic groups were slower than those in SV group(all P<0.05). Compared with SV lenses, wearing DIMS lenses delayed and 44.6% in myopia eyes, and 62.9% in non-myopia eyes, AL delayed by 40.0% in myopia eyes and 51.6% in non-myopia eyes. The percentage of 1-year AL change ≤0.2 mm in the DIMS-myopic group and non-myopic group was 53.9% and 65.4%, respectively, which was higher than that in the SV myopic group(34.7% and 42.9%, all P<0.05). The percentage of AL change >0.4 mm in the DIMS-myopic group and nonmyopic group was 17.3% and 7.7%, respectively, which was lower than that in the SV myopic group(32.7% and 28.6%, all P<0.05). There was no significant correlation between the change of AL and age and baseline AL in the DIMS-myopic and non-myopic groups after wearing lens for 1 a(all P>0.05); the change of AL in SV-myopic group and non-myopic group was negatively correlated with age(r=-0.446, P=0.001; r=-0.312, P=0.029), and there was no significant correlation with baseline AL(all P>0.05).CONCLUSION: DIMS lens has a good effect on myopia control and prevention in both myopia and non-myopia children with monocular myopia. Children with early pre-myopia can wear DIMS to prevent myopia.
7.Clinical observation of intravitreal injection of ranibizumab in the treatment of macular edema with different OCT subtypes of retinal vein obstruction
Ying CHEN ; Chao XUE ; Jiaxing CHEN
China Pharmacy 2025;36(21):2699-2704
OBJECTIVE To explore the efficacy and influencing factors of intravitreal injection of ranibizumab in the treatment of macular edema (ME) secondary to retinal vein obstruction (RVO) with different optical coherence tomography (OCT) subtypes. METHODS A retrospective study was conducted on 150 patients with ME secondary to RVO treated at Dept. of Ocular Trauma of Tianjin Eye Hospital between January 1, 2021 and January 1, 2024. According to OCT findings, patients were classified into the diffuse retinal thickening (DRT) group (48 cases), cystoid macular edema (CME) group (83 cases), and serous retinal detachment (SRD) group (19 cases). The best corrected visual acuity (BCVA) and central macular thickness (CMT) were compared before and at 1, 3 and 6 months after treatment. Clinical efficacies of 3 groups were compared based on CMT and fluorescein fundus angiography (FFA) findings before and after treatment. Adverse events and the number of additional injections of ranibizumab during treatment were compared among 3 groups. Using “ineffectiveness” in clinical outcomes at 6 months post- treatment as the dependent variable and patients’ baseline data as the independent variables, a multivariate Logistic regression analysis was conducted to identify risk factors influencing the clinical efficacy of ranibizumab. RESULTS The proportion of branch RVO was significantly higher in the CME and SRD groups than in the DRT group (P<0.05), while central RVO (CRVO) was more frequent in the DRT group than in the CME and SRD groups (P<0.05). The proportion of patients with ischemia was highest in the SRD group, followed by the CME and DRT groups (P<0.05), while the proportion of patients with ischemia in the CME group was significantly higher than that in the DRT group (P<0.05). Before treatment, the BCVA and CMT showed no significant differences among the 3 groups (P>0.05). After treatment, BCVA and CMT in all 3 groups were significantly reduced compared to those before treatment (P<0.05). At different treatment time points, patients in the CME group and SRD group consistently showed significantly higher BCVA and CMT values compared to those in the DRT group (P<0.05). Six months after treatment, the differences in clinical efficacy among the 3 groups were statistically significant (P<0.05), with the proportion of non-responders in the SRD group being significantly higher than that in the DRT group and the CME group (P<0.05). The number of additional injections of ranibizumab in patients from the CME group and the SRD group was significantly more than that in the DRT group (P<0.05). The incidence of adverse reactions did not differ significantly among 3 groups (P>0.05). Multivariate Logistic regression revealed that CRVO and ischemic type were common risk factors affecting the clinical efficacy of ranibizumab in all 3 groups, while longer disease duration was an independent risk factor for the clinical efficacy of ranibizumab in patients from the DRT group. CONCLUSIONS The therapeutic efficacy of ranibizumab varies among different OCT phenotypes of ME secondary to RVO. DRT patients achieve the best visual improvement, SRD patients have the highest non-response rate, and CME/SRD patients require more additional injections of ranibizumab. CRVO and ischemia are shared adverse prognostic factors for poor prognosis in various subtypes of ME secondary to RVO. Individualized treatment and follow-up strategies should be developed based on OCT patterns and risk factors.
8.Analysis of the effect of dosimeter wearing position on effective dose estimation among interventional radiology workers
Xuanrong ZHANG ; Wen GUO ; Xian XUE ; Pin GAO ; Kaiyi WANG ; Xuan ZHANG ; Yanqiu DING ; Xiao LUO ; Wenfang MENG ; Jun CHAO
Chinese Journal of Radiological Health 2025;34(5):687-694
Objective To evaluate the influence of the wearing position of dosimeters outside lead aprons on effective dose estimation for interventional radiology workers, analyze the differences between single and double dosimeter methods in effective dose estimation, and provide a reference for the personal dose monitoring of interventional radiology workers. Methods This study employed a combined approach of on-site monitoring and Monte Carlo simulation to evaluate the impact of the wearing position of dosimeters outside lead aprons on effective dose estimation, as well as the differences between effective doses measured using single and double dosimeters. Interventional radiology workers wore dosimeters at three positions: the neck outside the lead collar, the left chest outside the lead apron, and inside the lead apron. Effective doses were estimated using the single and double dosimeter methods specified in GBZ 128-2019 Specifications for individual monitoring of occupational external exposure, and the impact of different wearing positions on the estimation results was compared. Geant4 Monte Carlo simulations were used to model dose distributions at the neck outside the lead collar and at the left chest outside the lead apron for operators performing cardiovascular interventions under tube voltages of 70, 80, 90, and 100 kVp and exposure angles of posteroanterior (PA), anteroposterior (AP), and left anterior oblique 45° (LAO45°) positions. The study assessed the impact of dosimeter wearing position on effective dose estimation. Results Monte Carlo simulations demonstrated that neck doses consistently exceeded left chest doses across different tube voltages and exposure angles, with neck-to-chest dose ratios of 0.80-0.90. Under identical tube voltage conditions, AP showed the highest doses, followed by LAO45°, and PA demonstrated the lowest doses. The single and double dosimeter methods exhibited consistent patterns in effective dose estimation. Single dosimeter method generally yielded higher effective doses with relative deviations of 9.9% to 83%, though these deviations decreased under high tube voltages. Field monitoring data indicated that most interventional radiology workers maintained relative deviations between single and double dosimeter calculations below 6%, with neck-to-chest dose ratios of 0.95-1.1. The estimation patterns remained consistent across both methods, though single dosimeter method showed slightly higher results. Conclusion Under PA, AP, or LAO45°, the doses at the neck consistently exceeded those at the left chest. Therefore, when wearing lead protective equipment, the dosimeter should be properly positioned at the neck outside the lead collar to accurately reflect the radiation doses of surgeons. Some interventional radiology workers improperly positioned the dosimeter (intended at the neck outside the lead collar) at the left chest outside the lead apron, and this may result in an underestimation of the effective dose.
9.Pharmaceutical care of drug use in a case of severe pneumonia complicated with lung abscess caused by Fusobacterium necrosis
Jing MA ; Chao CUI ; Jiabing XU ; Zhongjing MENG ; Yingqian FU ; Yao XUE ; Lihui CUI
Chinese Journal of Pharmacoepidemiology 2024;33(10):1170-1177
To introduce a strategy for a case of severe pneumonia complicated with lung abscess caused by Fusobacterium necrotum.The pathogen was not identified,but the patient was still coughing up feverish bloody sputum after being treated with meropenem,linezolid and ornidazole.The results of detection of pathogen metagenomes in bronchoalveolar lavage fluid by posterior bronchoscopy suggested that the pathogen was Fusobacterium necrophorum,according to the characteristics of bacteria,the dynamic changes of clinical symptoms,liver and kidney function,body temperature and blood picture infection index,combined with the results of bacterial culture/drug sensitivity test,bronchoalveolar lavage fluid NGS and the pharmacokinetic/pharmacodynamic characteristics of antimicrobial agents,to propose an anti-infective regimen that is strategically adjusted to imipenem cilastatin(1.0 g,ivd,q8h)plus ornidazole(0.5 g,ivd,q12h)for the implementation of pharmaceutical care after adoption by physicians.After 21 days,the patient's severe infection and lung abscess was controlled and patient was discharged.In this case,clinical pharmacists study the bacterial characteristics of Fusobacterium necrotum,review a large number of domestic and foreign literature to track the frontier knowledge of antimicrobial agents,and use their own expertise to provide effective pharmaceutical support for the clinical team,to assist clinical team in the diagnosis and treatment of rare infections,to achieve professional value.
10.Effects of Tao Hong Si Wu decoction on circular RNA expression profiles in rats with middle cerebral artery occlusion
Chang-Yi FEI ; Li-Juan ZHANG ; Ni WANG ; Fu-Rui CHU ; Chao YU ; Su-Jun XUE ; Ling-Yu PAN ; Dai-Yin PENG ; Xian-Chun DUAN
Chinese Pharmacological Bulletin 2024;40(5):954-963
Aim To screen and study the effects of Tao Hong Si Wu decoction(THSWD)-mediated treat-ment on circular RNA(circRNA)expression profiles in rats with middle cerebral artery occlusion(MCAO),and investigate the possible roles and molecular mecha-nisms of THSWD.Methods Next-generation RNA sequencing was conducted to identify circRNA expres-sion profiles in MCAO rats after treatment with THSWD and compared with the MCAO model group and control group.Bioinformatics analysis was performed to predict the potential target microRNAs and mRNAs.Gene On-tology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses for the potential target mRNAs were applied to explore the potential roles of differentially expressed circRNAs.RT-qPCR was performed to verify circRNAs with significant differences in expression.Results We identified 87 significantly differentially expressed circRNAs between the MCAO group versus the control group,and 86 sig-nificantly differentially expressed circRNAs between the MCAO group versus the THSWD group.respective-ly.Among them,17 circRNAs induced by the MCAO model were reversed via treatment with THSWD.To demonstrate the roles of mRNAs targeted by DECs,the GO and KEGG databases were used.Further analysis revealed that five circRNAs may play important roles in the development of MCAO.Conclusions The com-prehensive expression profile of circRNAs in rats with middle cerebral artery occlusion after THSWD treat-ment is determined for the first time,suggesting that the therapeutic effect of THSWD on MCAO may be a-chieved by regulating the expression of circRNAs.

Result Analysis
Print
Save
E-mail