1.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
2.Immune checkpoint inhibitor-related T-cell-mediated rejection increases the risk of perioperative graft loss after liver transplantation.
Li PANG ; Yutian LIN ; Tao DING ; Yanfang YE ; Kenglong HUANG ; Fapeng ZHANG ; Xinjun LU ; Guangxiang GU ; Haoming LIN ; Leibo XU ; Kun HE ; Kwan MAN ; Chao LIU ; Wenrui WU
Chinese Medical Journal 2025;138(15):1843-1852
BACKGROUND:
Pre-transplant exposure to immune checkpoint inhibitors (ICIs) significantly increases the risk of allograft rejection after liver transplantation (LT); however, whether ICI-related rejection leads to increased graft loss remains controversial. Therefore, this study aimed to investigate the association between ICI-related allograft rejection and perioperative graft loss.
METHODS:
This was a retrospective analysis of adult liver transplant recipients with early biopsy-proven T-cell-mediated rejection (TCMR) at Liver Transplantation Center of Sun Yat-sen Memorial Hospital from June 2019 to September 2024. The pathological features, clinical characteristics, and perioperative graft survival were analyzed.
RESULTS:
Twenty-eight patients who underwent early TCMR between June 2019 and September 2024 were included. Based on pre-LT ICI exposure, recipients were categorized into ICI-related TCMR (irTCMR, n = 12) and conventional TCMR (cTCMR, n = 16) groups. Recipients with irTCMR had a higher median Banff rejection activity index (RAI) (6 vs . 5, P = 0.012) and more aggressive tissue damage and inflammation. Recipients with irTCMR showed higher proportion of treatment resistance, achieving a complete resolution rate of only 8/12 compared to 16/16 for cTCMR. Graft loss occurred in 5/12 of irTCMR recipients within 90 days after LT, with no graft loss in cTCMRs recipients. Cox analysis demonstrated that irTCMR with an ICI washout period of <30 days was an independent risk factor for perioperative graft loss (hazard ratio [HR], 6.540; 95% confidence interval [CI], 1.067-40.067, P = 0.042).
CONCLUSION
IrTCMR is associated with severe pathological features, increased resistance to treatment, and higher graft loss in adult liver transplant recipients.
Humans
;
Liver Transplantation/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Graft Rejection/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
T-Lymphocytes/drug effects*
;
Graft Survival/immunology*
;
Aged
3.Design, synthesis and biological evaluation of a novel class of indazole-containing compounds with potent anti-influenza activities targeting the PA-PB1 interface.
Yun-Sang TANG ; Chao ZHANG ; Jing XU ; Haibo ZHANG ; Zhe JIN ; Mengjie XIAO ; Nuermila YILIYAER ; Er-Fang HUANG ; Xin ZHAO ; Chun HU ; Pang-Chui SHAW
Acta Pharmaceutica Sinica B 2025;15(6):3163-3180
The PA-PB1 interface of the influenza polymerase is an attractive site for antiviral drug design. In this study, we designed and synthesized a mini-library of indazole-containing compounds based on rational structure-based design to target the PB1-binding interface on PA. Biological evaluation of these compounds through a viral yield reduction assay revealed that compounds 27 and 31 both had a low micromolar range of the half maximal effective concentration (EC50) values against A/WSN/33 (H1N1) (8.03 μmol/L for 27; 14.6 μmol/L for 31), while the most potent candidate 24 had an EC50 value of 690 nM. Compound 24 was effective against different influenza strains including a pandemic H1N1 strain and an influenza B strain. Mechanistic studies confirmed that compound 24 bound PA with a K d which equals to 1.88 μmol/L and disrupted the binding of PB1 to PA. The compound also decreased the lung viral titre in mice. In summary, we have identified a potent anti-influenza candidate with potency comparable to existing drugs and is effective against different viral strains. The therapeutic options for influenza infection have been limited by the occurrence of antiviral resistance, owing to the high mutation rate of viral proteins targeted by available drugs. To alleviate the public health burden of this issue, novel anti-influenza drugs are desired. In this study, we present our discovery of a novel class of indazole-containing compounds which exhibited favourable potency against both influenza A and B viruses. The EC50 of the most potent compounds were within low micromolar to nanomolar concentrations. Furthermore, we show that the mouse lung viral titre decreased due to treatment with compound 24. Thus our findings identify promising candidates for further development of anti-influenza drugs suitable for clinical use.
4.Yeast-two-hybrid based high-throughput screening to discover SARS-CoV-2 fusion inhibitors by targeting the HR1/HR2 interaction.
Jing ZHANG ; Dongsheng LI ; Wenwen ZHOU ; Chao LIU ; Peirong WANG ; Baoqing YOU ; Bingjie SU ; Keyu GUO ; Wenjing SHI ; Tin Mong TIMOTHY YUNG ; Richard Yi TSUN KAO ; Peng GAO ; Yan LI ; Shuyi SI
Acta Pharmaceutica Sinica B 2025;15(9):4829-4843
The continuous emergence of SARS-CoV-2 variants as well as other potential future coronavirus has challenged the effectiveness of current COVID-19 vaccines. Therefore, there remains a need for alternative antivirals that target processes less susceptible to mutations, such as the formation of six-helix bundle (6-HB) during the viral fusion step of host cell entry. In this study, a novel high-throughput screening (HTS) assay employing a yeast-two-hybrid (Y2H) system was established to identify inhibitors of HR1/HR2 interaction. The compound IMB-9C, which achieved single-digit micromolar inhibition of SARS-CoV-2 and its Omicron variants with low cytotoxicity, was selected. IMB-9C effectively blocks the HR1/HR2 interaction in vitro and inhibits SARS-CoV-2-S-mediated cell-cell fusion. It binds to both HR1 and HR2 through non-covalent interaction and influences the secondary structure of HR1/HR2 complex. In addition, virtual docking and site-mutagenesis results suggest that amino acid residues A930, I931, K933, T941, and L945 are critical for IMB-9C binding to HR1. Collectively, in this study, we have developed a novel screening method for HR1/HR2 interaction inhibitors and identified IMB-9C as a potential antiviral small molecule against COVID-19 and its variants.
5.IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution.
Chao-Yu YANG ; Yan SHEN ; Xiaoyang QI ; Lufeng DING ; Yanyang XIAO ; Qingyuan ZHU ; Hao WANG ; Cheng XU ; Pak-Ming LAU ; Pengcheng ZHOU ; Fang XU ; Guo-Qiang BI
Neuroscience Bulletin 2025;41(2):344-348
6.Single-Neuron Reconstruction of the Macaque Primary Motor Cortex Reveals the Diversity of Neuronal Morphology.
Siyu LI ; Yan SHEN ; Yefei CHEN ; Zexuan HONG ; Lewei ZHANG ; Lufeng DING ; Chao-Yu YANG ; Xiaoyang QI ; Quqing SHEN ; Yanyang XIAO ; Pak-Ming LAU ; Zhonghua LU ; Fang XU ; Guo-Qiang BI
Neuroscience Bulletin 2025;41(3):525-530
7.Two new isocoumarins from cave-derived Metarhizium anisopliae NHC-M3-2
Rong-xiang WU ; Jie-lan GUO ; Hua HUANG ; Jing-jing LIAO ; Yi HAO ; Fan-dong KONG ; Li-man ZHOU ; Chao-jun ZHANG
Acta Pharmaceutica Sinica 2024;59(9):2588-2593
Extracting extracts of secondary metabolites from the karst cave fungus
8.Not Available.
Honglan WANG ; Yannan LIU ; Changqing BAI ; Sharon Shui Yee LEUNG
Acta Pharmaceutica Sinica B 2024;14(1):155-169
Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection. These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates. They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance, making them an invaluable asset in the era of antibiotic resistance. Numerous depolymerases have been investigated preclinically, with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models. Additionally, some formulation approaches have been developed for improved stability and activity of depolymerases. However, depolymerase formulation is limited to liquid dosage form and remains in its infancy, posing a significant hurdle to their clinical translation, compounded by challenges in their applicability and manufacturing. Future development must address these obstacles for clinical utility. Here, after unravelling the history, diversity, and therapeutic use of depolymerases, we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases. Finally, the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.
9.Effect of Guiqi Yiyuan Ointment Combined with Cisplatin on Mice with Lewis Lung Cancer Through Endoplasmic Reticulum Stress Pathway and Mitochondrial Apoptosis Pathway
Siqi KONG ; Jintian LI ; Juan LI ; Jianqing LIANG ; Yi ZHANG ; Yue ZHANG ; Chao YUAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(20):54-61
ObjectiveTo explore the effects of Guiqi Yiyuan ointment combined with cisplatin on mice with Lewis lung cancer through the endoplasmic reticulum stress pathway and mitochondrial apoptosis pathway. MethodFifty SPF male C57BL/6 mice were randomly divided into the model group, cisplatin group (0.005 g·kg-1), and low, medium, and high dose groups of Guiqi Yiyuan ointment combined with cisplatin (0.005+1.6 g·kg-1, 0.005+3.3 g·kg-1, and 0.005+6.6 g·kg-1). Lewis cell suspension was inoculated under the axilla of mice in each group to construct the Lewis lung cancer xenograft mouse model. After continuous administration for 14 days, the mice were sacrificed. The body weight of the mice was measured, and the tumor weight was measured after the tumors were removed. The organ index and tumor inhibition rate were calculated. Hematoxylin-eosin ( HE) staining was used to observe the pathological changes in tumor tissue. Flow cytometry was used to detect the apoptosis rate of tumor cells and the ratio of reactive oxygen species (ROS). Western blot was used to detect the expression of glucose-regulated protein 78 (GRP78), phosphorylated activated protein kinase R-like endoplasmic reticulum kinase (p-PERK), activated transcription factor 4 (ATF4), and apoptosis protein C/EBP homologous protein (CHOP) in the endoplasmic reticulum stress pathway, as well as cysteine aspartate protease-9 (Caspase-9), B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the mitochondrial apoptosis pathway. ResultCompared with those in the model group, the mice in the groups of Guiqi Yiyuan Ointment combined with cisplatin had shinier fur and better mental response status. Tumor mass was reduced in all treatment groups (P<0.05), and tumor inhibition rate was increased in all treatment groups (P<0.05). The thymus and spleen indices of the combined group were increased (P<0.05), and obvious pathological changes were observed in the tumor tissue of all treatment groups, with a gradual decrease in heteromorphism. Destruction of massive tumor tissue was observed in the high-dose combined group, and the apoptosis rate and ROS generation rate of tumor cells were increased in all treatment groups (P<0.05). The protein expression level of Bcl-2 in the tumor tissue gradually decreased (P<0.05), while the protein expression levels of GRP78, p-PERK, ATF4, CHOP, Bax, and Caspase-9 were significantly increased (P<0.05). Compared with the cisplatin group, tumor mass was reduced in the combined group (P<0.05), and tumor inhibition rates in the low and high-dose combined groups were increased (P<0.05). The thymus index, spleen index, apoptosis rate of tumor cells, and ROS ratio in the combined group were significantly increased (P<0.05), while the protein expression levels of GRP78, p-PERK, Bax, and Caspase-9 were increased in the low and high-dose combined groups (P<0.05). The protein expression levels of ATF4 and CHOP were increased in the combined group (P<0.05), while the expression level of Bcl-2 protein gradually decreased (P<0.05). ConclusionGuiqi Yiyuan ointment combined with cisplatin can exert anti-tumor effects in mice with Lewis lung cancer, reduce tumor mass, increase tumor inhibition rate, and induce apoptosis of lung cancer cells. Its mechanism may be related to the regulation of the endoplasmic reticulum stress pathway and mitochondrial apoptosis pathway.
10.Finite element analysis of three-dimensional frame screws and minimally invasive plate for fixation of Sanders Ⅲ calcaneal fractures
Dewei KONG ; Chao SONG ; Liang WU ; Ming WU ; Lulu GONG ; Jiaqi WANG ; Hongyuan PAN ; Xinbin FAN ; Yan ZHANG
Chinese Journal of Tissue Engineering Research 2024;33(33):5289-5294
BACKGROUND:Satisfactory clinical results have been achieved in the treatment of Sanders Ⅲ calcaneal fractures by percutaneous compression fixation with three-dimensional frame screws.However,whether the stability of minimally invasive plate internal fixation can be achieved in terms of biomechanics,and the advantages and disadvantages after comparison are still unknown. OBJECTIVE:To investigate the fixation effect of different internal fixation devices on Sanders Ⅲ calcaneal fractures by finite element analysis. METHODS:A finite element model of Sanders Ⅲ calcaneal fracture was made based on CT data of a 26-year-old healthy male volunteer.The calcaneal fracture models were fixed by minimally invasive three-dimensional frame screws and minimally invasive Y-plate.The longitudinal loads of 350 and 700 N were applied respectively.The displacement and stress distribution of the two models were analyzed,and the stability of each model was compared. RESULTS AND CONCLUSION:(1)The peak stress of bone block and implant in the minimally invasive three-dimensional frame screw model was significantly lower than that in the minimally invasive minimally invasive plate model.The average stress of bone block and implant in the three-dimensional frame screw model was also significantly lower than that in the minimally invasive plate model.(2)The maximum displacement of the two models was located at the medial side of the articular surface of the posterior talus,and the maximum displacement of the three-dimensional frame screw model was smaller than that of the minimally invasive plate model.(3)The longitudinal displacement between the anterior fragment and the medial fragment of the minimally invasive plate model was smaller,and the transverse and vertical displacement between the medial fragment and the middle fragment of the three-dimensional group screw model was smaller.(4)It is concluded that both of the two internal fixation models can provide satisfactory fixation effect.The three-dimensional frame screw model can provide better transverse and vertical stability with more uniform stress distribution and smaller comprehensive displacement of bone fragments,while the minimally invasive plate has more advantages in maintaining longitudinal stability.

Result Analysis
Print
Save
E-mail