1.Effects of leonurine on myocardial injury in rats with coronary heart disease by regulating the GAS6/Axl signaling pathway
Wangtao MENG ; Dongling CUI ; Dongjing WU ; Chao CHEN ; Yingying ZHANG
China Pharmacy 2025;36(1):51-56
OBJECTIVE To explore the effects of leonurine on growth arrest-specific protein-6 (GAS6)/Axl signaling pathway, and clarify its mechanism of alleviating myocardial injury in rats with coronary heart disease. METHODS The rat model of coronary heart disease was constructed; successfully modeled rats were randomly separated into model group, leonurine low- dose and high-dose groups (intragastric administration of leonurine 25, 100 mg/kg+intraperitoneal injection of normal saline 75 mg/kg), and leonurine high-dose+GAS6/Axl signaling pathway inhibitor group (intragastric administration of leonurine 100 mg/kg+ intraperitoneal injection of R428 75 mg/kg), with 12 rats in each group. Additional 12 normal rats were selected as control group. Each administration group was given relevant medicine; control group and model group were given a constant volume of normal saline intragastrically and intraperitoneally, once a day, for 48 consecutive days. After administration, the heart function of rats, and serum levels of inflammatory factors and myocardial injury markers were detected; the pathological morphology of myocardial tissue was observed; the myocardial cell apoptosis rate, the expressions of apoptosis and GAS6/Axl signaling pathway-related proteins were determined. RESULTS Compared with control group, model group showed disorders in the arrangement of myocardial cells and myocardial fibers, hypertrophy of myocardial cells, and nuclear condensation; left ventricular ejection fraction, left ventricular fractional shortening, ratio of early-diastolic and late-diastolic motion velocity of the mitral ring, the protein expression of GAS6, B-cell lymphoma 2/B-cell lymphoma 2 associated X protein and phosphorylated Axl/Axl ratios were decreased significantly (P<0.05). The levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, creatine kinase isoenzyme, troponin Ⅰ and myoglobin, the cell apoptosis rate, and cleaved caspase-3/caspase-3 ratio were increased significantly (P<0.05). Leonurine could obviously improve the above pathological conditions and detection indicators (P<0.05), and the effect of leonurine high-dose group was more significant than that of leonurine low-dose group (P<0.05); R428 treatment could reverse the ameliorating effect of high-dose of leonurine on myocardial injury in rats with coronary heart disease (P<0.05). CONCLUSIONS Leonurine can alleviate myocardial injury in rats with coronary heart disease, and its mechanism of action is related to the activation of the GAS6/Axl signaling pathway.
2.Mid-long term follow-up reports on head and neck rhabdomyosarcoma in children
Chao DUAN ; Sidou HE ; Shengcai WANG ; Mei JIN ; Wen ZHAO ; Xisi WANG ; Zhikai LIU ; Tong YU ; Lejian HE ; Xiaoman WANG ; Chunying CUI ; Xin NI ; Yan SU
Chinese Journal of Pediatrics 2025;63(1):62-69
Objective:To analyze the clinical characteristics of children with head and neck rhabdomyosarcoma (RMS) and to summarize the mid-long term efficacy of Beijing Children′s Hospital Rhabdomyosarcoma 2006 (BCH-RMS-2006) regimen and China Children′s Cancer Group Rhabdomyosarcoma 2016 (CCCG-RMS-2016) regimen.Methods:A retrospective cohort study. Clinical data of 137 children with newly diagnosed head and neck RMS at Beijing Children′s Hospital, Capital Medical University from March 2013 to December 2021 were collected. Clinical characteristic of patients at disease onset and the therapeutic effects of patients treated with the BCH-RMS-2006 and CCCG-RMS-2016 regimens were compared. The treatments and outcomes of patients with recurrence were also summarized. Survival analysis was performed by Kaplan-Meier method, and Log-Rank test was used for comparison of survival rates between groups.Results:Among 137 patients, there were 80 males (58.4%) and 57 females (41.6%), the age of disease onset was 59 (34, 97) months. The primary site in the orbital, non-orbital non-parameningeal, and parameningeal area were 10 (7.3%), 47 (34.3%), and 80 (58.4%), respectively. Of all patients, 32 cases (23.4%) were treated with the BCH-RMS-2006 regimen and 105 (76.6%) cases were treated with the CCCG-RMS-2016 regimen. The follow-up time for the whole patients was 46 (20, 72) months, and the 5-year progression free survival (PFS) and overall survival (OS) rates for the whole children were (60.4±4.4)% and (69.3±4.0)%, respectively. The 5-year OS rate was higher in the CCCG-RMS-2016 group than in BCH-RMS-2006 group ((73.0±4.5)% vs. (56.6±4.4)%, χ2=4.57, P=0.029). For the parameningeal group, the 5-year OS rate was higher in the CCCG-RMS-2016 group (61 cases) than in BCH-RMS-2006 group (19 cases) ((57.3±7.6)% vs. (32.7±11.8)%, χ2=4.64, P=0.031). For the group with meningeal invasion risk factors, the 5-year OS rate was higher in the CCCG-RMS-2016 group (54 cases) than in BCH-RMS-2006 group (15 cases) ((57.7±7.7)% vs. (30.0±12.3)%, χ2=4.76, P=0.029). Among the 10 cases of orbital RMS, there was no recurrence. In the non-orbital non-parameningeal RMS group (47 cases), there were 13 (27.6%) recurrences, after re-treatment, 7 cases survived. In the parameningeal RMS group (80 cases), there were 40 (50.0%) recurrences, with only 7 cases surviving after re-treatment. Conclusions:The overall prognosis for patients with orbital and non-orbital non-parameningeal RMS is good. However, children with parameningeal RMS have a high recurrence rate, and the effectiveness of re-treatment after recurrence is poor. Compared with the BCH-RMS-2006 regimen, the CCCG-RMS-2016 regimen can improve the treatment efficacy of RMS in the meningeal region.
3.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
4.Application and research progress of artificial intelligence in macular disease
Chao ZHANG ; Yuanyuan QI ; Shugang WANG ; Li CUI
International Eye Science 2025;25(7):1094-1098
Algorithmic systems based on artificial intelligence(AI)and machine learning(ML)have undergone rapid advancement in recent years, demonstrating extensive application across diverse ophthalmic disorders. Owing to the public availability of multiple global databases, significant progress has been achieved in the training and development of AI-integrated algorithms utilizing multimodal ophthalmic imaging modalities, including fundus photography and optical coherence tomography(OCT). These advancements have established a foundation for precision medicine and efficient healthcare delivery. The diagnosis of macular diseases relies on the identification of subtle alterations in tissue anatomy, where AI demonstrated exceptional performance in detecting intraocular biomarkers and evaluating anatomical changes during disease progression, with particularly prominent utility in the field of macular pathologies. This article provides a comprehensive review of the current applications of AI in macular diseases, aiming to synthesize existing research achievements and current challenges, while proposing visionary prospects for the broader implementation of AI in ophthalmology and even systemic medicine in the future.
5.The mechanism of epigallocatechin gallate enhancing the sensitivity of hepatocellular carcinoma cells to lenva-tinib
Chuanfang SONG ; Jiang AI ; Chao WEN ; Jie ZHANG ; Jianghe CUI
China Pharmacy 2025;36(18):2256-2261
OBJECTIVE To investigate the potential mechanism of epigallocatechin gallate (EGCG) enhancing the sensitivity of hepatocellular carcinoma (HCC) cells to lenvatinib based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. METHODS Five human HCC cell lines (HepG2, Huh-7, SMMC-7721, SNU-368 and SNU-739) were used to evaluate the effects of lenvatinib alone and in combination with EGCG on survival rates, clone number, proliferation rate, invasion number and the expressions of mRNAs and proteins related to the PI3K/Akt signaling pathway. The PI3K activator insulin-like growth factor-1 (IGF-1) was introduced to investigate the effect of activating the PI3K/Akt signaling pathway on the sensitization effect of EGCG. RESULTS Compared with the control group, lenvatinib (10 μmol/L) and different concentrations of EGCG+ lenvatinib (1, 5 and 10 μg/mL EGCG+10 μmol/L lenvatinib) significantly reduced the survival rates and clone numbers of all five HCC cell lines in a dose-dependent manner (P<0.05). Lenvatinib (10 μmol/L) and EGCG+lenvatinib (10 μg/mL EGCG+10 μmol/L lenvatinib) also markedly inhibited the proliferation rate and invasion numbers of these cells, and decreased the mRNA expressions of PI3K, Akt, mammalian target of rapamycin (mTOR), P70S6K and 4EBP, and the phosphorylation levels of PI3K and Akt, as well as the protein expressions of mTOR and B cell lymphoma-2 (Bcl-2) in HepG2 cells or all five HCC cells; conversely, the mRNA and protein expressions of phosphatase and tensin homologue deleted on chromosome 10(PTEN), and the protein expressions of caspase-3 and cleaved caspase-3 were significantly upregulated, with more pronounced effects observed in the EGCG+lenvatinib group than in the lenvatinib group (P<0.05). Compared with the lenvatinib group and the EGCG+lenvatinib group, the clone number, proliferation rate and invasion number of HepG2 cells in the EGCG+lenvatinib+IGF-1 group (10 μg/mL EGCG+10 μmol/L lenvatinib+50 ng/mL IGF-1) were significantly increased (P<0.05). CONCLUSIONS EGCG can enhance the sensitivity of HCC cells to lenvatinib, and its underlying mechanism may be related to the inhibition of the activation of PI3K/Akt signaling pathway activation.
6.The regulatory effect and mechanism of PGC-1α on mitochondrial function.
Song-Hua NAN ; Chao-Jie PENG ; Ying-Lin CUI
Acta Physiologica Sinica 2025;77(2):300-308
Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) is a core member of the PGC-1 family and serves as a transcriptional coactivator, playing a crucial regulatory role in various diseases. Mitochondria, the main site of cellular energy metabolism, are essential for maintaining cell growth and function. Their function is regulated by various transcription factors and coactivators. PGC-1α regulates the biogenesis, dynamics, energy metabolism, calcium homeostasis, and autophagy processes of mitochondria by interacting with multiple nuclear transcription factors, thereby exerting significant effects on mitochondrial function. This review explores the biological functions of PGC-1α and its regulatory effects and related mechanisms on mitochondria, providing important information for our in-depth understanding of the role of PGC-1α in cellular metabolism. The potential role of PGC-1α in metabolic diseases, cardiovascular diseases, and neurodegenerative diseases was also discussed, providing a theoretical basis for the development of new treatment strategies.
Humans
;
Mitochondria/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology*
;
Animals
;
Energy Metabolism/physiology*
;
Neurodegenerative Diseases/physiopathology*
;
Autophagy/physiology*
;
Transcription Factors/physiology*
;
Metabolic Diseases/physiopathology*
;
Cardiovascular Diseases/physiopathology*
7.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
8.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
9.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
10.β-sitosterol, an important component in the fruits of Alpinia oxyphylla Miq., prolongs lifespan of Caenorhabditis elegans by suppressing the ferroptosis pathway.
Junyi LI ; Siyuan CHEN ; Liyao XIE ; Jin WANG ; Ao CHENG ; Shaowei ZHANG ; Jiyu LIN ; Zhihan FANG ; Yirui PAN ; Chonghe CUI ; Gengxin CHEN ; Chao ZHANG ; Li LI
Journal of Southern Medical University 2025;45(8):1751-1757
OBJECTIVES:
To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Alpinia oxyphylla Miq., in C. elegans and its regulatory effect on ETS-5 gene to modulate ferroptosis.
METHODS:
C. elegans treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function. The effect of ETS-5 gene knockdown on survival time of C. elegans was observed, and the changes in fat accumulation and lipid redox homeostasis in the transfected C. elegans were assessed using Oil Red O staining and by detecting MDA levels and the GSH/GSSG ratio. The mRNA expression levels of ferroptosis-related genes (FTN-1, GPX-1 and AAT-9) were detected using qPCR. The effects of BS treatment and ETS-5 knockdown on AAT-9 enzyme activity in C. elegans were examined. The effect of BS on nuclear localization of FEV (the human homolog of ETS-5) was validated in cultured human umbilical venous endothelial cells (HUVECs).
RESULTS:
Both BS treatment and ETS-5 knockdown significantly prolonged the lifespan, promoted lipid accumulation and reduced lipid peroxidation in C. elegans. ETS-5 knockdown resulted in upregulated expressions of the ferroptosis repressors GPX-1, AAT-9 and FTN-1 and increased the GSH/GSSG ratio in C. elegans.
CONCLUSIONS
BS inhibits ferroptosis in C. elegans by suppressing the expression of ETS-5 transcription factor and hence the activity of AAT-9 enzyme, a key gene for ferroptosis, which in turn prolongs the lifespan of C. elegans.
Animals
;
Caenorhabditis elegans/physiology*
;
Ferroptosis/drug effects*
;
Alpinia/chemistry*
;
Sitosterols/pharmacology*
;
Longevity/drug effects*
;
Fruit/chemistry*
;
Humans

Result Analysis
Print
Save
E-mail